Nature of the Active Center for the Oxygen Reduction on Ag-Based Single-Atom Alloy Clusters

Yixuan Pu, Jia-Lan Chen, Jian-Wen Zhao, Li Feng, Jinze Zhu, Xuechun Jiang, Wei-Xue Li, and Jin-Xun Liu*

ABSTRACT: The development of alternative alloy catalysts with high activity, surpassing platinum group metals, for the oxygen reduction reaction (ORR) is urgently needed in the field of electrocatalysis. The Ag-based single-atom alloy (AgSAA) cluster has been proposed as a promising catalyst for the ORR; however, enhancing its activity under operational conditions remains challenging due to limited insights into its actual active site. Here, we demonstrate that the operando formation of the MO(OH) complex serves as the key active site for catalyzing the ORR over AgSAA cluster catalysts, as revealed through comprehensive neural network potential molecular dynamics simulations combined with first-principles calculations. The volcano plot of the ORR over the MO(OH) complex addresses the gaps inherent in traditional metallic alloy models for pure AgSAA cluster catalysts in ORR catalysis. The appropriate orbital hybridization between OH and the dopant metal in the MO(OH) complex indicates that the AgPd, AgPd, and AgAu clusters are optimal AgSAA catalysts for the ORR. Our work underscores the significance of theoretical modeling considering the reaction atmosphere in uncovering the true active site for the ORR, which can be extended to other reaction systems for rational catalyst design.

KEYWORDS: alloy, catalysts, ORR, AgSAA, cluster

INTRODUCTION

Renewable energy conversion and storage technologies, such as water electrolyzers, batteries, and fuel cells, have garnered widespread attention and interest in recent years, driven by the goal of establishing a clean and sustainable society. At the heart of numerous energy conversion and storage systems is the oxygen reduction reaction (ORR), which plays a vital role in facilitating the efficient electrocatalytic performance in alkaline fuel cells and batteries. Density functional theory (DFT) calculations revealed that Mn, Fe, Co, Zr, Mo, and W are particularly effective ORR catalysts when incorporated into AgM mixed-surface nanoalloys. Single-atom alloys (SAAs) are a new class of single-site alloy catalysts that feature small quantities of isolated metal atoms dispersed within more inert and catalytically selective host metals. The unique electronic structure of SAA, coupled with the synergistic effect between the doped single atom and the host metal, has the potential to enhance catalytic activity and

Silver (Ag) metal, which is abundant and cost-effective, is considered a potential alternative to expensive catalysts for the ORR in alkaline environments over Pt-based catalysts. Numerous silver nanoalloys, including AgPd, AgCu, and AgCo nanoalloys, have been reported in experiments because of their efficient electrocatalytic performance in facilitating the ORR in alkaline fuel cells and batteries. Density functional theory (DFT) calculations revealed that Mn, Fe, Co, Zr, Mo, and W are particularly effective ORR catalysts when incorporated into AgM mixed-surface nanoalloys. Single-atom alloys (SAAs) are a new class of single-site alloy catalysts that feature small quantities of isolated metal atoms dispersed within more inert and catalytically selective host metals. The unique electronic structure of SAA, coupled with the synergistic effect between the doped single atom and the host metal, has the potential to enhance catalytic activity and

Received: February 6, 2024
Revised: July 22, 2024
Accepted: July 22, 2024

© XXXX The Authors. Published by American Chemical Society.

https://doi.org/10.1021/jacsau.4c00116
selectivity in many chemical reactions compared to each counterpart of the catalysts. These features, including high catalytic activity, exceptional selectivity, and reduced material consumption, position SAA as a promising catalyst candidate for various reactions. In particular, incorporating isolated atoms such as Ni, Pd, Pt, Co, and Rh into Ag(111) and Au(111) matrices significantly enhances the catalytic performance of SAA catalysts by promoting optimal adsorption configurations for intermediates such as O$_2^*$, OOH*, O*, and OH*. The Ag-based SAA (AgSAA) cluster functions as an innovative catalyst for the ORR. Gold−silver alloy nanoclusters composed of Ag$_{54}$Au$_1$ SAA supported on activated carbon exhibited outstanding ORR activity in alkaline solutions. Additionally, an exceptional ORR performance is attainable with Ag clusters/nanoparticles that are even doped with a small number of Cu atoms. Further theoretical studies indicate that the Ag$_{52}$Cu$_1$ alloy cluster is a more effective ORR catalyst than the Ag$_{53}$ and Cu$_{13}$ clusters. Despite many investigations, the determination of the optimal catalyst and the understanding of the actual active sites and the catalytic role of AgSAA cluster catalysts under operational conditions for the ORR are open questions that hinder rational catalyst design.

For a specific AgSAA cluster catalyst, the surface composition and structure undergo dynamic changes due to reaction atmosphere. Therefore, identifying the surface structure and active site of AgSAA clusters for the ORR remains a highly challenging task from experimental and theoretical modeling points of view. Herein, we performed comprehensive theoretical modeling to reveal the catalytic role of AgSAA clusters in the ORR in aqueous alkaline media. The representative magic-numbered Ag$_{54}$Co$_1$ clusters (≈1.1 nm) were studied extensively in the present work. Grand canonical Monte Carlo (GCMC) simulations demonstrated that the Ag$_{54}$Co$_1$ cluster is in the metallic phase and that a single Co atom resides in the core of the Ag$_{54}$Co$_1$ cluster in aqueous alkaline solution. However, neural network potential molecular dynamics (MD) simulations combined with ab initio thermodynamic analysis have shown that atomic oxygen intermediates can induce the migration of Co atoms onto Ag clusters/nanoparticles that are even doped with a small number of Cu atoms. Further theoretical studies indicate that the Ag$_{52}$Cu$_1$ alloy cluster is a more effective ORR catalyst than the Ag$_{53}$ and Cu$_{13}$ clusters. Despite many investigations, the determination of the optimal catalyst and the understanding of the actual active sites and the catalytic role of AgSAA cluster catalysts under operational conditions for the ORR are open questions that hinder rational catalyst design.

Figure 1. Adsorption energetics and dynamic behavior of the Ag$_{54}$Co$_1$ cluster. (a) Calculated adsorption energies of O*/O_2^* and OH* species at the surface Ag site and Co site of the Ag$_{54}$Co$_1$ cluster with respect to gaseous O$_2$ and OH$^-$ in solution, respectively. The cohesive energy between Co and Ag in the Ag$_{54}$Co$_1$ cluster was also calculated based on the equation Ag$_{55}$+ Co$_1$(bulk) → Ag$_{54}$Co$_1$+ Ag$_1$(bulk). All the energies are in eV. (b) GCMC simulation to identify the number of adsorbed O* or OH* species on the Ag$_{54}$Co$_1$ cluster. The surface-adsorbed O* can be transformed into OH*, which was calculated based on the reaction O* + H$_2$O + e$^-$ → OH* + OH$^-$. The Gibbs free energy of OH$^-$ in solution was calculated as G$_{OH}$ = 1/4 (2G$_{H_2O}$ + G$_{O}$ − 4.92). (c) ML-accelerated MD simulations conducted to study the adsorption of O* on the Ag$_{54}$Co$_1$ cluster for 200 ps at 400 K. (d) rmsd of Ag$_{54}$Co$_1$ during MDs over 0.2 ns. (e) Free energy surface (FES) of Co atom migration from the inside to the surface of the Ag$_{54}$Co$_1$ cluster calculated by metadynamics, with the collective variable being the bond length between Co and O atoms. (f) Snapshot of the ML-accelerated MD simulation depicting O* adsorption on the Ag$_{54}$Co$_1$ cluster. The blue, pink, red, and orange spheres represent Ag, Co, O, and H atoms, respectively.
surfaces during the formation of CoOxOH complexes. The operando formation of the MOx(OH)y complex can also be found in other AgSAA (M = Co, Ni, Fe, Ru, Rh, Pd, Pt, Au, Cu, Zn, and In) cluster systems. The volcano plot for the ORR, based on the MOx(OH)y complex, validates previous experimental measurements, which cannot be understood by conventional pure metallic AgSAA cluster models. The MOx(OH)y complex formed under operating conditions can be the actual active site for the ORR. We predicted that the most active Agx5Co0, Agx5Pd0, and Agx5Au could be promising AgSAA catalysts for the ORR. The formation of stable MOx(OH)y complexes in an AgSAA catalyst under the conditions of the ORR suggests that complex surface chemistry is likely common, challenging the simplicity of conventional metallic AgSAA models. Our work may prompt a reconsideration of the active site of SAA catalysts for various other reactions.

RESULTS AND DISCUSSION

DFT calculations were first performed to study the stability of the “magic-numbered” 55-atom SAA Ag55Co1 cluster, which was chosen here because it has a diameter of approximately 1.1 nm, in line with the commonly synthesized cluster size in experiments. Additionally, according to the Gibbs-Thomson equation, a 3 nm Ag nanoparticle (0.17 eV) exhibits similar stability to that of a Ag55 cluster (0.18 eV). Thus, the Ag55 cluster demonstrates high stability and can coexist with the nanoparticles, as shown in Figure S1.

A single cobalt atom tends to reside within the core of the Ag55Co1 cluster rather than on its surface at −0.46 eV (Table S1). Consequently, significantly fewer cobalt atoms are present on the surface of the Ag55Co1 cluster. Neural network potential MD simulations revealed that the presence of solvent water neither adsorbed nor induced Co migration from the subsurface to the surface of the Ag55Co1 cluster in 1 ns, indicating a negligible solvent effect in this context (Figure S2). Considering that the kinetic limiting step for the ORR on Ag catalysts is the initial endothermic reduction of O2, resulting in the formation of an adsorbed OOH* intermediate, our study focused on examining O2*, O*, and OOH* on the Ag55Co1 cluster. On the surface of the Ag55Co1 cluster, only the key intermediate O* can adsorb slightly exothermically by −0.31 eV, whereas the other O2* and O* intermediates prefer to desorb rather than adsorb by 0.63 and 0.80, respectively (Figures 1a and S3). GCMC simulations, with the chemical potential of gaseous O2 as the sole input, were utilized to quantify the O* species adsorbed on the surface of the Ag55Co1 SAA cluster, as depicted in Figure 1b. From the multitude of DFT calculations for more than 200 structures, the GCMC simulation indicates that the atomic O* species have a low ability to adsorb onto the Ag55Co1 cluster due to the endothermic Gibbs free adsorption energy of 0.17 eV at 273 K. Additionally, the hydrogenation of the O* species to form OH* species is less favorable, as indicated by the endothermic nature of the reaction of O* + H2O + e− → OH* + OH*, with a Gibbs free energy change of 0.13 eV (Table S2). As a result, the clean metallic Ag55Co1 cluster is the most stable configuration without OH* or OH* adsorption under ORR operating conditions from a static theoretical modeling perspective. Our calculations are in line with a previous study indicating that the Ag surface retains its metallic nature under ORR conditions when the potential remains below 0.90 V.

To assess the likelihood of Co migrating from the core to the surface of the Ag55Co1 cluster influenced by the Co atom in the core to the surface of the Ag55Co1 cluster, a process driven by the adsorption of O2* and O*, even though this migration is allowed from a thermodynamic perspective. A higher temperature of 400 K was selected as an alternative to room temperature to accelerate the MD simulation. Simultaneously, the adsorbed intermediate O2* species on Ag atoms cannot drive the migration of subsurface Co to the cluster surface because the considerable distance between the O* species and the cluster surface exceeds 3.20 Å, resulting in a strong steric effect preventing O2* from coming into contact with the Co atom in the core of the Ag55Co1 cluster. However, the chemisorbed O* species could drive the migration of subsurface Co atoms toward the surface of the Ag55Co1 cluster (Figure 1c,d). In the root-mean-square deviation (rmsd) analysis of the whole cluster, we found that before 75 ps, Co atoms were located within the inner cluster and the rmsd was 0.25 Å. From 75 to 110 ps, the Co atom migrated from the inner cluster to the surface and combined with surface oxygen atoms, causing the rmsd to change from 0.25 to 1.0 Å. After 120 ps, the Co atom stabilized at the surface, and the rmsd for the whole Ag55Co1 cluster remained at 1.00 Å (Figure 1d). Further RDF analysis indicated that Ag–Ag and Ag–Co interactions are similar in the first neighbor at 2.5 Å during the 200 ps MD simulations. However, the first neighbor of Co–O is at 1.70 Å after the Co atom migrates to the Ag55Co1 surface (Figure S4). The dynamic migration of Co atoms from the interior to the surface of the Ag55Co1 cluster can be attributed to the low coordination number of Ag atoms within the SAA Ag55Co1 cluster, which allows for atom fluidity and facilitates the feasible movement of subsurface Co atoms toward the cluster surface to adsorb O* during the formation of more stable Ag55Co1Ox complexes. We performed metadynamic simulations to determine the energy barrier for the migration of Co atoms with a value of 0.24 eV (Figure 1e). This indicates that the migration process is spontaneous even at room temperature. Furthermore, once migration is complete, the Co atom becomes stably anchored on the cluster surface, as returning it to the core would require overcoming a significant energy barrier of 0.69 eV (Figure 1e).

Given the migration of the Co atom from the core to the surface of the cluster, more O* and/or OH* can adsorb at the Co site. We further performed ab initio thermodynamic analysis to determine the number of O* atoms (x) or OH* species (y) involved in the formation of Ag55Co1Ox(OH)y.
clusters under operating ORR conditions based on the following equation

$$\text{Ag}_{54}\text{Co}_i + (x/2 + y/2)\text{O}_2 + y\text{H}_2\text{O} + ye^- \rightarrow \text{Ag}_{54}\text{Co}_i\text{O}_x(\text{OH})_y + y\text{OH}^-$$ \hspace{1cm} (5)

As the quantity of oxygen atoms increased, the average binding strength of each atomic oxygen gradually weakened

Consequently, the O* and/or OH* species could adhere to the Co atom site during the formation of Co$_x$O$_y$(OH)$_z$ complexes until the ΔG value reached a positive threshold. Interestingly, the Co atom tends to accommodate three oxygen atoms (Co$_3$O$_3$) before the change in Gibbs free energy for further addition of oxygen species becomes positive. Moreover, the adsorbed O* species were observed to react with water, resulting in the exothermic formation of adsorbed

Figure 2a. Consequently, the O* and/or OH* species could adhere to the Co atom site during the formation of Co$_x$O$_y$(OH)$_z$ complexes until the ΔG value reached a positive threshold. Interestingly, the Co atom tends to accommodate three oxygen atoms (Co$_3$O$_3$) before the change in Gibbs free energy for further addition of oxygen species becomes positive. Moreover, the adsorbed O* species were observed to react with water, resulting in the exothermic formation of adsorbed

Figure 3. ORR mechanism study. (a) Scheme of the ORR mechanism. The red and orange spheres are O and H atoms, respectively. (b) Potential energy diagram for the ORR over the Ag$_{54}$Co$_2$O$_2$OH, Ag$_{54}$Co, Ag(111), Pt(111), and CoO(111) surfaces. (c) Volcano plot of the U_L of the M$_x$O$_y$(OH)$_z$ complexes formed under operational ORR conditions. (d) Volcano plot of the U_L of the metallic Pt(111) surface and Ag$_{54}$M$_i$ cluster, where a single M atom is located on the surface of the cluster.
OH* species. Our observations indicate that one or two adsorbed O* species could undergo a transformation into an OH* species during the formation of the most stable CoO2OH or CoO(OH)2 configurations under operando ORR conditions (Figure 2a and Table S3).

The evaluation of the stability of CoO2(OH)x complexes under ORR conditions necessitates consideration of factors such as the pH and voltage under the reaction conditions. A Pourbaix diagram serves as an ideal tool for analyzing this scenario.66 The calculated Pourbaix diagram (Figure 2b) illustrates potential CoO2(OH)x structures within the SAA Ag54Co1 cluster system. CoO2(OH) and CoO(OH)2 complexes primarily exist within the alkaline domain (pH > 10) with negative voltages (V < 0), while pure metallic Ag54Co1 exhibits greater stability at lower potentials. In contrast, CoO(OH) demonstrates greater stability at a higher potential of 0.80 V at pH = 14, which aligns with real basic industrial conditions.54 Thus, experimentally synthesizing Ag54Co1 clusters is highly desirable for enhancing the ORR activity (Figure S6 and Table S4). Therefore, Ag54Co1 clusters could be promising candidates for catalyzing the ORR under alkaline conditions, primarily due to the presence and notable reactivity of the CoO2OHOH complex.

In this study, we focused on the ORR activity over Ag54Co1OHOH clusters and found that the inclusion of a graphene support and implicit water led to negligible changes in the ORR activity over Ag54Co1OHOH clusters as compared to previous work.37 Therefore, CoO2(OH) complexes dynamically form during the operando ORR (Figure 2c–f), setting them apart from what is typically considered to occur on the pure metallic SAA Ag54Co1 cluster.

To achieve high ORR activity, a superacid catalyst should exhibit a midrange stability for OH* and OH* intermediates, avoiding both excessive affinity and weak interactions. The Gibbs free energy for the formation of the OH* intermediate (ΔG(OH*) on the Pt(111) surface is endothermic at 0.35 eV, whereas a ΔG(OH) value of −0.36 eV indicates a decreased poisoning effect on the adsorption of OH* on the Pt(111) surface (Figure 3b and Table S2). However, the Ag(111) surface exhibited lower activity than the Pt(111) surface, which was primarily attributed to the greater positive formation energy of the OH* intermediates on the former surface by 0.51 eV (Table S2). In contrast, the CoO(111) surface also displays much lower activity than the Pt(111) surface due to significantly stronger OH* adsorption (ΔG(OH*) = −2.01 eV), leading to surface poisoning. Finally, the CoO2(OH) complex could exhibit exceptional ORR activity, as it moderately adsorbed the OOH* (O*/OH*) intermediates, distinguishing itself from both the Ag(111) and CoO(111) surfaces (Figure 3b and Table S2).

We calculated the Uc value for the ORR across the four surfaces under consideration. The theoretical limiting potential Uc of the ORR is defined as

\[U_c = \frac{-\text{max}(\Delta G_{\text{f}}, \Delta G_{\text{g}}, \Delta G_{\text{a}})}{e} \]

where ΔGf, ΔGg, and ΔGa are the Gibbs free energy differences at each step of the reaction. This Uc signifies the external voltage needed for each step of the reaction to become spontaneous and is a pivotal measurement for evaluating the catalyst reactivity. The Uc of the CoO2OH complex was measured at 0.61 eV, surpassing that of both the Ag(111) (measured at 0.29 eV) and CoO(111) surfaces (measured at −1.24 eV), as well as that of Pt(111) (measured at 0.45 eV) (Figure S6). Consequently, the CoO2OH complex exhibited superior ORR activity compared with those of the Pt(111), Ag(111), and CoO(111) surfaces. Compared with the Ag54 cluster and the Ag(111) surface, the Ag54Co1OHOH alloy cluster exhibits enhanced ORR activity, underscoring the critical role of alloy formation in enhancing the ORR performance. This finding clearly demonstrates that the superior catalytic efficiency of the Ag54Co1 alloy cluster is primarily due to the presence and interaction of a single Co atom within the cluster rather than the Ag atoms themselves. Therefore, experimentally synthesizing Ag54Co1 alloy clusters is highly desirable for enhancing the ORR activity (Figure S6 and Table S4). Therefore, Ag54Co1 clusters could be promising candidates for catalyzing the ORR under alkaline conditions, primarily due to the presence and notable reactivity of the CoO2OHOH complex.
features metals that strongly interact with OH* ($E_{\text{OH}}^* < 0.1$ eV). The peak atop the volcano corresponds to high ORR activity, illustrating that the ideal ORR catalyst is characterized by OH* binding with moderate strength. This balance in the OH* binding strength, positioned at the peak of the E_{OH}^* volcano plot, is indicative of an optimal catalyst for the ORR. Remarkably, the ORR activity varied significantly among the different Ag$_{x}$M$_{1}$ clusters, emphasizing the pivotal role of the specific doping of single atoms in fine-tuning the catalytic activity for the ORR. Among these complexes, the Co$_{2}$O$_{4}$OH complex shows the highest ORR activity, with a high U_{L} of 0.61 V (Table S9). The Co$_{2}$O$_{4}$OH complexes show higher activity than the Pt(111) surface, indicating that the Ag$_{x}$Co$_{1}$ clusters hold promise as potential candidates for replacing noble Pt catalysts for the ORR in alkaline environments.

Moreover, the U_{L} of Ag$_{x}$Au$_{1}$(OH)$_{3}$ and Ag$_{x}$Pd$_{1}$(OH)$_{3}$ (0.65 and 0.59 V) is slightly greater than that of Pt, whereas the SAA Ag$_{x}$Ru$_{1}$O(OH)$_{3}$ and Ag$_{x}$Rh$_{1}$O(OH)$_{3}$ clusters have even lower ORR activity, with a U_{L} of nearly −0.20 V due to the stronger adsorption of OH* intermediates on the latter clusters (Table S9). However, the Ag$_{x}$In$_{1}$(OH)$_{4}$ cluster also exhibited low ORR activity, with a U_{L} of 0.31 eV (Table S9), which was attributed to the weak adsorption of OH* on the cluster, resulting in a high energy cost during the formation of crucial OOH* intermediates.

Traditional theoretical modeling often relies on the use of pure metallic cluster alloy models to interpret experimental observations. A comparison of the volcano curves representing the Ag$_{x}$M$_{1}$O$_{2}$(OH)$_{3}$ and Ag$_{x}$M$_{1}$ models highlighted significant differences in their catalytic behaviors. However, metallic alloy models frequently fail to accurately represent the ORR activity observed in the experiments. For instance, the metallic Ag$_{x}$Au$_{1}$ cluster demonstrates a positive OOH* formation energy ($E_{\text{OOH}}^* = 0.50$ eV) (Table S8), leading to significantly low ORR activity with a U_{L} of 0.30 V (Table S9). However, when structured as an Ag$_{x}$Au$_{1}$O(OH)$_{2}$ cluster, Au$_{1}$O(OH)$_{2}$ exhibited an OOH* formation energy of approximately 0.15 eV, suggesting high ORR activity ($U_{L} = 0.65$ V). The Au$_{1}$O(OH)$_{2}$ complex model supports experimental measurements showing the presence of single Au atoms in an oxidized state, as indicated in Table S10. This difference in behavior between the operando-formed Au$_{1}$O(OH)$_{2}$ complex and the metallic Ag$_{x}$Au$_{1}$ cluster emphasizes the need to identify the true configuration under operando reaction conditions through a comparison between the calculated ORR activity and experimental results. The convergence between the experimental results and calculations strongly indicates that the active species of Ag-based alloy clusters under the reaction conditions is the Au$_{1}$O(OH)$_{2}$ complex with high ORR activity. This new perspective has been further explored in light of experimental findings that demonstrate superior ORR activity in AgCu and AgPd alloy nanoparticle catalysts with Cu and Pd in an oxide state, as reported in several studies. However, it is important to note that the Ag$_{x}$Pt$_{1}$ alloy shows activity lower than that of the Ag$_{x}$Co$_{1}$, Ag$_{x}$Cu$_{1}$, and Ag$_{x}$Au$_{1}$ clusters. This outstanding performance of AgPt alloys from the experimental data suggested that in addition to the formation of M$_{1}$O$_{2}$(OH)$_{3}$ complexes, other unique structural config-
urations in Ag-based alloys might contribute to enhanced ORR activity.46,47 Our findings strengthen our understanding of the role and significance of these complexes formed under operational ORR conditions in dictating the catalytic behavior of these alloys during the ORR process.

To achieve the highest U_0, it is essential to have an appropriate OH* adsorption strength, which is strongly correlated with orbital hybridization between OH* and single-atom M centers in operando-formed $M_iO_x(OH)_y$ complexes. Moderate OH* adsorption necessitates appropriate orbital hybridization between OH* and a single-atom M center. We compared the electronic structures of OH* adsorbed by the $Ag_{5x}Co_{y}O_{z}(OH)_w$, $Ag_{5x}In_{y}(OH)_u$ and $Ag_xRu_yO(OH)_v$ clusters, which exhibited moderate, weak, and strong adsorption strengths, respectively. The restricted occupancy of 4d orbitals in $Ag_{5x}In_{y}(OH)_u$ leads to much weaker hybridization with OH* and reduced charge transfer from In atoms to OH*, resulting in a significantly lower OH* adsorption strength and ORR activity. On the other hand, the significant expansion of the Ru 4d orbital near the Fermi level and the proximity of the energy levels between the Ru and OH* orbitals led to charge transfer and strong hybridization, which resulted in strong OH* adsorption at the Ru site (Figure 4a). The crystal orbital Hamilton population (COHP) analysis further corroborates this, showing a greater occupation of the bonding orbitals between Ru and the oxygen atom in OH*, as illustrated in Figure S10. The strong OH* adsorption poisons the Ru site, leading to a reduction in ORR activity. In contrast, the $Ag_{5x}Co_{y}O_{z}OH$ complex exhibited high ORR activity, primarily attributed to its moderate OH* adsorption strength, strong electrostatic interactions, and moderate hybridization between CO and OH* (Figures 4a–g and S11, S12). The conjecture that simultaneous hybridization of adsorbates with a single atom in $Ag_{5x}M_iO_x(OH)_y$ complexes contributes to high ORR activity is a compelling insight, indicating that such interactions play a crucial role in achieving optimal catalytic behavior.

To illustrate the significant difference in performance between the $Ag_{5x}Co_{y}O_{z}OH$ and $Ag_{5x}Co_{y}$ cluster models, we conducted further electronic analysis to reveal the greater activity of the $Ag_{5x}Co_{y}O_{z}OH$ complex compared to that of the metallic $Ag_{5x}Co_{y}$ cluster. The enhanced adsorption of OH* on metallic $Ag_{5x}Co_{y}$ compared to that on the $Ag_{5x}Co_{y}O_{z}OH$ complex can be attributed to stronger repulsive interactions between OH* and other O* species on the latter complex. On the metallic $Ag_{5x}Co_{y}$ cluster, where CO is positioned on the surface, significant hybridization occurs between CO and OH* at -6.00 eV, but this hybridization is not observed in the case of $Ag_{5x}Co_{y}O_{z}OH$, as shown in Figure S11. COHP analysis revealed that a greater number of bonding orbitals between Co and O* in OH* are occupied on the $Ag_{5x}Co_{y}$ surface than in the $Ag_{5x}Co_{y}O_{z}OH$ complex. This leads to a lower integrated ICOP for the Ag–O bond in the $Ag_{5x}Co_{y}O_{z}OH$ complex, as demonstrated in Figure S12. As a result, OH* exhibited a moderate adsorption strength on the $Ag_{5x}Co_{y}O_{z}OH$ complex, in contrast to its stronger adsorption on the metallic $Ag_{5x}Co_{y}$ cluster. This stronger adsorption on metallic $Ag_{5x}Co_{y}$ results in decreased ORR activity due to a poisoning effect on the cluster. Our research emphasizes the importance of considering the operando formation of structures in accurately determining the active site of the ORR.

\section*{CONCLUSIONS}

In summary, comprehensive first-principles calculations revealed that the $Ag_{5x}M_x(OH)_y$ complex acts as the pivotal active site for catalyzing the ORR over Ag-based SAA cluster catalysts. The resulting volcano plot derived for the $Ag_{5x}M_x(OH)_y$ complex concurs with the experimental observations, contrasting with the inadequacy of commonly used models for identifying metallic SAA Ag$_M$$_y$ clusters. Our work underscores the importance of theoretical modeling considering the reaction atmosphere in uncovering the true active site of a reaction. These insights deepen our understanding of the structures of the $Ag_{5x}M_x(OH)_y$ complex under the ORR conditions, offering valuable perspectives for better catalyst design for the ORR and other catalytic systems.

\section*{METHODS}

Spin-polarized DFT calculations were conducted by using the Vienna ab initio simulation package (VASP) code.48,49 We used projector augmented wave potentials50 and utilized the Perdew–Burke–Ernzerhof functionals.51 During the cluster calculations, we placed the 55-atom Ag clusters in a vacuum box with cell dimensions of $16.34 \times 16.34 \times 16.34$ Å. Theicosahedron Ag_{5x} clusters generally exhibit (111)-like surfaces. The Brillouin zone was sampled with a 1×1 Monkhorst-Pack k-point. The energy cutoff for the plane wave basis set was set at 350 eV during structure optimization, and the geometry optimization was considered complete when the forces on each atom were less than 0.05 eV/Å with a convergence threshold of 10^{-4} eV. The electronic analysis of the COHP analysis was conducted by using LOBSTER.52 The VASPKIT package53 was used for postprocessing the VASP calculations.

We employed well-tempered metadynamics simulation for exploration of the FES. These simulations were conducted using the large-scale atomic/molecular massively parallel simulator (LAMMPS) software,54 which incorporates the Collective Variables Module (Colvars),55 to apply the biasing potentials. Energy and force calculations were performed utilizing the NN potential of the Recursively Embedded Atom Neural Network (REANN)56–58 within LAMMPS. In this study, the neural network architecture comprised layers of 256 and 128 nodes. A cutoff distance of 7 Å was implemented. The orbital count was established at 10, with Gaussian-type orbitals (GTOs) characterized by s, p, and d functions. In this work, 50,000 structures obtained by ab initio MDs simulations59 were calculated for training the NN potential for the $Ag_{5x}M_xO_y$ cluster. The root-mean-square error was 1.54 meV/atom. The AIMD simulations were carried out in the canonical ensemble (NVT) at 400 K with a time step of 0.5 fs. More details on the DFT calculations, GCMC simulations, and establishment of the Pourbaix diagram are provided in the Supporting Information.

\section*{ASSOCIATED CONTENT}

\section*{Data Availability Statement}

The data that support the findings of this study are available from the corresponding author upon reasonable request.

\section*{Supporting Information}

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.4c00116.

Detailed methodology, GCMC simulations, and Pourbaix diagrams (PDF)

\section*{AUTHOR INFORMATION}

\section*{Corresponding Author}

Jin-Xun Liu — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science,
University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China; orcid.org/0000-0002-7499-4197; Email: jxliu86@ustc.edu.cn

Authors

Yixuan Pu — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Jia-Lan Chen — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Jian-Wen Zhao — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Li Feng — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Jinze Zhu — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Xuechun Jiang — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

Wei-Xue Li — Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

Complete contact information is available at: https://pubs.acs.org/10.1021/jacsau.4c00116

Author Contributions

§ Y.P. and J.-L.C. authors contributed equally. J.X.L. conceived the idea and supervised and directed the project. Y.P. performed the theoretical calculations and analyzed the DFT data. All the authors discussed the results and wrote and commented on the paper. CRediT: Yixuan Pu conceptualization, formal analysis, investigation, writing-original draft, writing-review & editing; Jia-Lan Chen conceptualization, formal analysis, investigation, writing-review & editing; Jian-Wen Zhao formal analysis, methodology, writing-original draft, writing-review & editing; Li Feng data curation, investigation, writing-review & editing; Jinze Zhu formal analysis, investigation; Xuechun Jiang formal analysis, investigation, writing-review & editing; Wei-Xue Li formal analysis, investigation; Jinxun Liu conceptualization, project administration, supervision, writing-review & editing.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Key Technologies R&D Program of China (2021YFA1502804), the Strategic Priority Research Program of the Chinese Academy of Science (XDB04050202), the National Natural Science Foundation of China (22172150, 22221003, and 22222306), the National Natural Science Foundation of Anhui Province (2105085QB62), the USTC Research Funds of the Double First-Class Initiative (YD2060002012), K. C. Wong Education (GJTD-2020-15), the Innovation Program for Quantum Science and Technology (2021ZD0303302), and high-performance computational resources provided by the University of Science and Technology of China and the Hefei Advanced Computing Center.

REFERENCES

(14) Balkan, T.; Küçükceveci, H.; Aksoy, D.; Harfouche, M.; Metin, O.; Kay, S. Ag/AgCl clusters derived from AgCu alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Sustainable Energy Fuels 2022, 6 (10), 2593–2601.
JACS Au

