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ABSTRACT: The nature of the active sites and their structure
sensitivity are the keys to rational design of efficient catalysts but have
been debated for almost one century in heterogeneous catalysis. Though
the Brønsted−Evans−Polanyi (BEP) relationship along with linear
scaling relation has long been used to study the reactivity, explicit
geometry, and composition properties are absent in this relationship, a
fact that prevents its exploration in structure sensitivity of supported
catalysts. In this work, based on interpretable multitask symbolic
regression and a comprehensive first-principles data set, we discovered a
structure descriptor, the topological under-coordinated number mediated
by number of valence electrons and the lattice constant, to successfully
address the structure sensitivity of metal catalysts. The database used for
training, testing, and transferability investigation includes bond-breaking
barriers of 20 distinct chemical bonds over 10 transition metals, two metal crystallographic phases, and 17 different facets. The
resulting 2D descriptor composing the structure term and the reaction energy term shows great accuracy to predict the reaction
barriers and generalizability over the data set with diverse chemical bonds in symmetry, bond order, and steric hindrance. The theory
is physical and concise, providing a constructive strategy not only to understand the structure sensitivity but also to decipher the
entangled geometric and electronic effects of metal catalysts. The insights revealed are valuable for the rational design of the site-
specific metal catalysts.

■ INTRODUCTION
Catalysis plays a pivotal role in a wide range of chemical
processes, enabling the synthesis of vital materials and the
conversion of raw resources into value-added products.1,2 In
the quest for sustainable and environmentally friendly chemical
transformations, the development of efficient catalysts that
selectively activate target molecules is of utmost impor-
tance.3−5 Supported transition metals (TMs) are widely used
to improve the catalytic activity and selectivity for their great
tunability of geometry structure,6−8 composition,9,10 size,11−14

and strong metal−support interaction15−18 among others.
Talyor proposed nearly one century ago that unsaturated active
sites control the reactivity,19 and Boudart classified the
catalytic reactions as either structure sensitive or insensitive.20

Despite great progress so far, considering that there are many
factors across multiple scales to contribute to the observed
activity and selectivity,21−25 identification of the intrinsic active
sites where the catalysis takes place at the atomic level, its site-
specific activity, and structure sensitivity for rational design of
efficient catalysts remain a great challenging in heterogeneous
catalysis.

The structure sensitivity of metal catalysts is molecule and
reaction dependent.26−28 For instance, the activation of

molecular π-bonds requires an active site with a unique
configuration of several metal atoms, and the rate of reaction
decreases with a decrease of the particle size, whereas the
activation of σ-bonds requires the activation to proceed at a
single metal atom and the rate increases with a decrease in the
particle size.29,30 In addition, when large-size molecules such as
methanol and ethane are considered, the steric effect of the
reactants might become pronounced, and its dependence on
the particle size changed.31,32 Moreover, when chemical bonds
with different bond order and strength (such as single, double,
and triple bonds) are involved, the energy balance between
bond breaking and forming at the transition states (TSs)
changes as well.33,34 These distinct chemistries bring multiple
variances, which will eventually lead to different structure
sensitivities and site-specific activities.
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The empirical Bronsted−Evans−Polanyi (BEP) relationship
along with the linear scaling relation has long been used as a
general theoretical framework to study among others the
general trend behavior and influence of the geometric structure
and composition of catalysts on activity.35−38 The BEP
relationship correlates the activation energy Ea with the
reaction energy ΔE of an elementary reaction,39−42 that is,
Ea = αΔE + β, where α and β are the fitting slope and
intercept, respectively. It was believed that the electronic and
geometric effects could be separated based on the BEP
relationships by α and β, respectively.43 The BEP relationship
holds well for the same class of reaction molecules on different
metal surfaces with similar geometric structure where their TSs
are the similar and final state-like.44,45 In this case, ΔE and thus
Ea were decided purely by the metal composition (electronic
effects). However, when different molecules44−48 or geometri-
cally distinct surfaces49,50 were involved, the fitting of the BEP
relation to the calculated Ea presents a large error. In fact, in
the BEP relationship, the geometry and composition properties
of catalysts are not included explicitly, a fact that prevents
essentially its exploration in the structure sensitivity and
rational design of efficient catalysts.

Recently, machine learning techniques have been used to
predict the Ea,

51,52 including linear regression to support vector
regression,53 ensemble tree models,54 Gaussian processes,55

and neural networks,56 just to name a few. When considering
the reactants’ and surfaces’ geometric properties, such as
distance, angle, coordination number (CN), bond counts, etc.,
various models with improved accuracy over the BEP
relationship were achieved.57,58 Though these “black-box”
models can reach a higher accuracy, they lack transparency in
general.59 A physically interpretable and concise functional
form, explicitly incorporating the composition and geometry
properties of catalysts, yet more accurate than the BEP
relationship, remains open. Note that, during data mining and

machine learning investigation, the generation of a consistent
and sufficiently large data set is essential but often hindered
here specifically by the high computational cost of TS
searching by quantum mechanical calculations. Accordingly,
multisource data were often used, and the resulting data
heterogeneity brings additional difficulty, which requires the
use of proper data-driven approaches.60

The above challenges are addressed in this work by using
multitask symbolic regression61 over a comprehensive first-
principles bond-breaking barrier data set covering 20 distinct
bonds on 10 late transition metals and 17 differently orientated
surfaces. Within the framework of Sure Independence
Screening and Sparsifying Operator (SISSO)62,63 and a
multitask learning strategy to treat multisource data,63,64 we
build a concise and interpretable site-specific activity descriptor
from a huge space of expressions that are a nonlinear
combination of the primary composition and geometry
features of a metal catalyst. The topologically under-
coordinated number (TUCN), mediated by the number of
valence electrons and lattice constant of metal catalysts, was
discovered to describe successfully the structure sensitivity.
This structure term together with the reaction energy term
constructs a two-dimensional descriptor, which can predict
accurately the reaction barriers of numerous molecules across a
broad range of compositions and structures of metal catalysts.

■ RESULTS AND DISCUSSION
2.1. Geometric Effect of Metal Catalysts. For late

transition metals on supports, there are mainly two crystallo-
graphic phases: hexagonal close-packed (HCP) and face-
centered cubic (FCC). HCP might expose (0001), (101̅0),
(101̅1), (101̅2), (112̅0), (112̅1), (202̅1), and (213̅0) facets,
whereas FCC might expose (100), (110), (111), (210), (211),
(221), (310), (311), and (321) facets. Subjected to the
minimization of the overall surface energies and further

Figure 1. Influence of metal geometry and composition on the CO dissociation. (a) The dissociation barriers of CO against the reaction energy ΔE
on various HCP Co, FCC Ni, and HCP Ru surfaces. (b) Comparison of the RMSEs of fitting different physical parameters to the Ea on a variety of
transition metal surfaces (data provided in Table S1). (c) Ea against the reciprocal of the surface energy, 1/γ. (d) Comparison between the
calculated surface energy γ and that from model γ̂ in eq 2. (e) Ea against the a2/ΔCN.
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influenced by among others the presence of adsorbates, the
particle size, and metal−support interaction, exposed facets
and their ratio vary. These facets have very different surface
geometries, which provide an ideal platform to study the
geometry effects as reported below.

Taking CO dissociation as an example, calculated dissoci-
ation barriers Ea on various HCP Co and Ru and FCC Ni
surfaces are plotted with respect to the reaction energy ΔE in
Figure 1a. Though the surfaces with more exothermic ΔE have
a lower Ea in general, the linear relationship between Ea and
ΔE is hardly seen. Corresponding root mean squared errors
(RMSEs) based on the BEP fitting are 0.32, 0.42, and 0.28 eV,
respectively, which are too big to predict the reaction rate.
When more late transition metals (HCP Ni and FCC Co, Ru,
and Ir) (Figure 1b) are considered to add more electronic
effects, the corresponding RMSEs are at least 0.24 eV, which
remains considerable as well. These show that when different
surface structures are concerned, distinct geometric effects
break down the BEP relationship. This is expected since the
BEP relationship applies best for the surfaces with similar local
geometries, where corresponding reaction energies are decided
mainly by the composition (electronic effects) and stand out as
a single dominating factor.

When different surfaces are involved, corresponding TSs
change (Figure S1), and a new descriptor is mandatory to
account for the geometric effect. Note that for a given metal
the surface with a higher surface energy γ is expected to be
more reactive. In the past, we found that for N2 dissociation on
body-centered-cubic (BCC) iron,65 the higher γ of the surface,
the lower the calculated Ea. Inspired by this finding, we plot the
Ea of CO dissociation on various HCP Co and Ru and FCC Ni
surfaces with respect to the reciprocal of the corresponding γ in
Figure 1c. Surprisingly, we find there are very good linear
relationships between Ea and 1/γ, as justified by their small
RMSEs of 0.15, 0.15, and 0.06 eV, respectively. Even for HCP
Ni and FCC Co, Ru, and Ir, their maximum RMSEs remain
less than 0.19 eV, as shown in Figure 1b. Alternatively, the
RMSEs plotted with respect to 1/γ are systematically lower
than those with respect to ΔE, and for FCC Co they are
lowered by as much as 0.28 eV. We also investigated the
dissociation of the NO molecule with one more electron in the
2π* orbital than CO on various FCC metal surfaces including
Co, Ni, Cu, Ru, Rh, Pd, Pt, Ag, and Au. Corresponding RMSEs
for Ea versus 1/γ and ΔE are plotted in Figure S2. Again, the
former one shows much better performance than the latter
one, lower RMSEs, for instance, by 0.34 eV for Pd and 0.27 eV
for Ni. These demonstrate that γ is an excellent descriptor to
account for the structural effects of the metal catalysts.

Based on the bond-cutting model, where the bond energy
varies with the square root of the coordination number (CN),
a surface with lower CN has a higher γ in general.66−69 Note
that for a given surface of interest there might be more than
one atom with the same or different CN exposed, and all these
atoms with a CN different from the bulk counterpart would
raise the surface energy. To account for this, we defined a
specific topological under-coordinated number (TUCN), ΔCN,
as below:

i

k
jjjjjj

y

{
zzzzzz= ·

=

a
A

N
N

1
i

n i

CN

2

1

S

B (1)

where n is the number of exposed atoms in the primitive unit
cell with a surface area of A, NS

i is the corresponding CN of the

exposed ith atom, and NB and a are the bulk CN and lattice
constant. The summation counts all exposed metal atoms in
the cell. Surface area A is proportional to a2 and depends
further on the crystallography phase and surface orientation.
ΔCN is therefore a dimensionless and pure topological
geometry variable reflecting the extent of under-coordination.
For various facets considered with different surface Miller
indexes, corresponding ΔCN are tabulated in Table S2.
Specifically, ΔCN are 0.309 and 0.394 for FCC (111) and
(110) surfaces and 0.155 and 0.209 for HCP (0001) and
(213̅0), respectively.

We proposed here a generalized model for γ̂ with respect to
ΔCN:

= ·E
a

C
2 CN (2)

where EC is the cohesive energy of bulk metals, and the
prefactor EC/a2 is the energy cost to create the surface with
respect to the area of a2. To show the accuracy of eq 2, we
considered a total of 101 different surfaces of FCC and HCP
metals, including Co, Ni, Cu, Ru, Rh, Pd, Os, and Ir (Table
S3). The calculated γ are plotted against the model γ̂ =
EC·ΔCN/a2 in Figure 1d, from which an excellent linear
relationship (Pearson coefficient r = 0.95) can be found.

For a given metal (EC is fixed), the linear correlation
between Ea and a2/ΔCN could be expected. To show this, we
consider CO dissociation on various HCP Co, FCC Ni, and
HCP Ru surfaces as mentioned above. The resulting Ea with
respect to the a2/ΔCN are plotted in Figure 1e, from which a
good linear relationship is indeed found with RMSEs as small
as 0.08 for FCC Ni and 0.10 eV for HCP Ru. Compared to
those plots with respect to 1/γ, where HCP Co and FCC Ni
overlap considerably (Figure 1c), the corresponding lines are
well separated when a2/ΔCN was used. This shows that the
new descriptor is more constructive to differentiate the
structure effect. Figure 1b shows the competing accuracy
between 1/γ and a2/ΔCN, with the averaged RMSEs being
∼0.12 eV for the latter (more data in Table S1). These show
that ΔCN is indeed an excellent and better structure descriptor.
In the past CN as a descriptor has been used to describe the
structure effect on the adsorption energy on a metal
surface.70−74 Compared to the γ applying mainly for the
extended systems and/or large-size particles, ΔCN is a local
variable. This enables ΔCN to be applied potentially to small-
size and finite systems such as nanoparticles and clusters,
which requires further investigation. Considering its general
application and local characteristics, ΔCN instead of γ is used to
describe the geometric effect and site-specific activity of metal
catalysts for molecule activations.

2.2. Data-Driven Equation for Structure Sensitivity.
The above result highlights the importance of the ΔCN on
activation of the diatomic molecules. To explore statistically
how this influences the structural sensitivity and Ea in general,
we considered an extensive molecule data set including CO,
N2, NO, NH, OH, CHxOHy (x = 1,2, 3,4; y = 0, 1), and
CHxCHy (x = 0, 1, 2; y = 1, 2, 3). In this data set, diverse
chemical bonds with different steric hindrance, bond
symmetry, and order/strength are included. In total, 20
different bond-breaking reactions over the above-mentioned
nine FCC surfaces and eight HCP surfaces were investigated.
To reveal the composition and electronic effects, we looked at
10 late TMs, including Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and
Au. As shown schematically in Figure 2, a data set containing
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in total 278 barriers Ea are constructed from our own
consistent density functional theory (DFT) calculations unless
otherwise mentioned (Table S4). The training set for the
symbolic regression below includes only C−O, C−H, and O−
H bond breaking, while the data set for transferability
evaluation involves the N−H, N−N, N−O, and C−C bond
breaking, which are completely new to the training set.

We employed multitask symbolic regression within the
SISSO (MT-SISSO) to address explicitly the geometric and
electronic effects in such a way that high generalizability and
high accuracy could be approached simultaneously. In MT-
SISSO, all the molecules share the same regression functional
form, and each individual molecule was implicitly described by
a set of unique coefficients. By means of this, the molecule
features and complex steric effects involved in the activation
process but hard to describe are reflected in their respective
coefficients. The aforementioned ΔCN and 12 physical
parameters describing the metal catalysts including the number
of valence electrons (Ne), Pauling electronegativity, ionization
energy, electron affinity, atomic radius, interplanar distance,
and work function were used as input primary features (Table
S5) for the symbolic regression. All these primary features are
easy to obtain, and the parameters such as the TS structure and
the d-band information on the metal, which require explicit
DFT calculations, are excluded. Considering the importance of
reaction energy in justifying the reaction direction and
thermodynamic feasibility, ΔE was included as well in the
set of input features.

The goal of identifying the model for Ea should be to have a
simple and interpretable functional form yet with high
accuracy, e.g., RMSEs around 0.1 eV (the typical level of
data noise in DFT calculations). Accordingly, MT-SISSO
learning was tested at different dimensions and feature
complexity. The results in Figure S3 show that the models at
dimension 2 and feature complexity 1 have reached satisfactory
accuracy, and the top 10 competing 2D linear models are
shown in Table S6. Among these top-ranked models, the
feature describing the geometric effect, 1/ΔCN, mediated by a
prefactor of Ne·a2, appears most frequently in the first term.

Interestingly, one of the models has the ΔE naturally emerge as
the second term, with the models’ form as

= · · + · +E c
N a

c E ca 1
e

2

CN
2 0

(3)

where c1, c2, and c0 are reaction (task)-specific coefficients,
shown in Table S7. We note that the difference of the
coefficients between tasks accounts for not only the possible
inconsistency between data sources but more importantly the
identity of different molecules. Therefore, we did not apply
sign constraint in the multitask symbolic regression as
proposed in a recent work.64 Mostly, the coefficients c1 and
c2 are positive, but negative values (relatively small in
magnitude) were also found for a few cases. It is worth noting
that the present work is focused on the single-composition
catalysts. For alloy catalysts, the weighted Ne and a accounting
for the stoichiometry might be required.

The 2D model in eq 3 contains the composition (Ne and a)-
mediated geometry term Ne·a2/ΔCN (noted as the structure
term) and the reaction energy ΔE (noted as the energy term).
When the catalyst composition is given, the higher the ΔCN
(the more open the surface), the lower the Ea, and the more
active the TM, as found above. For a given ΔCN, the structure
term shows that Ea increases with Ne and a. In fact, as a rule of
thumb, for the late transition metals proceeding from the left
to the right along with increases of Ne and from 3d to 5d of the
periodic table along with increases of a, corresponding
reactivity decreases.75 The energy term in eq 3 shows the
importance of ΔE: the more exothermic the reaction energy is,
the lower the activation barrier, as found in the classic BEP
relationship. The two terms Ne·a2/ΔCN and ΔE account for the
composition-mediated structure effect and the reaction energy
effect, respectively, and therefore eq 3 will have a better
predictive performance, as shown later. Note that not all 2D
models could outperform necessarily the BEP model (i.e., 1D).
For example, on replacing the structure term by electro-
negativity, metallic radius, or surface energy, the corresponding
RMSEs increase, even up to that of the BEP model (Table
S10). Thus, eq 3 combines two essential physical terms along
with molecule-specific coefficients to reflect their relative
importance to the overall barrier.

The detailed accuracy of eq 3 by using MT-SISSO is shown
in Figure 3a, where activations of CO and CHxOHy species on
various TM surfaces were considered, including totally 96 (40
for the former and 56 for latter) data in training and 15 (7 for
the former and 8 for the latter) data in testing, respectively.
The resulting training RMSEs of 0.11 eV and mean absolute
error (MAE) of 0.09 eV are rather small, whereas the test error
increases slightly with RMSEs of 0.18 eV and an MAE of 0.15
eV. We decomposed Figure 3a into 3b and 3c to see the CO
and CHxOHy data separately. It is seen that the two subsets
cover different energy windows with different scattering. Their
training and test RMSEs (Figure 3b and 3c) are essentially the
same as those in Figure 3a. This exemplifies the robustness and
reliability of eq 3, which signify its generalizability to a broad
spectrum of molecule bond-breaking processes as addressed
below.

To demonstrate the generalizability, we first predict Ea for
some bond breaking (N2 and NO) and radicals (NH and OH)
that are unseen in the training and test sets (Figure 2), and the
results based on the 2D model versus DFT calculations are
plotted in Figure 4a−d. It can be found that the RMSEs are

Figure 2. Data sets of the bond-breaking barrier for molecules/
radicals on the metal catalysts for multitask symbolic regression. In
total, there are 10 transition metals with 17 facets and 20 bond-
breading reactions, which were split into the training, test, and
transferability sets.
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only 0.15, 0.15, 0.20, and 0.15 eV, respectively, showing
excellent accuracy and transferability. For comparison, we
calculated their RMSEs based on the BEP model. For N2 and
NO dissociations, the corresponding RMSEs considerably
increase by 0.20 eV because of the failure to capture the
structure effect, whereas for less structure-sensitive reactions,
such as NH and OH bond breaking, corresponding RMSEs of
the BEP model increase only by 0.02−0.03 eV. For large and/
or polyatomic new molecules with pronounced steric effects,
the developed 2D model remains accurate and transferable. To
demonstrate this, we considered the CH3OH and correspond-
ing O−H and C−H bond breaking on various TM surfaces (28
data in total),76 as well as the CCH, CCH2, CCH3, CHCH,
CHCH2, CHCH3, CH2CH2, and CH2CH3 and corresponding
C−C bond breaking on various FCC(211) surfaces (47 data in
total).77 Corresponding results are shown in Figure 4e and 4f,
and the overall RMSEs are as small as 0.13 and 0.12 eV,
respectively. As a comparison, the corresponding RMSEs based
on the BEP model are 0.05 and 0.09 eV higher. Considering
the exponential influence on the rate, an accurate Ea achieved
here is essential.

Concerning the data heterogeneity and its potential
influence, we note that the data of Ea were calculated by
using different exchange−correlation (xc) functionals,78 for
instance PBE79 for CO and N2, RPBE80 for NO, NH, OH, and
CHxCHy, and PW9181 for CHxOHy. Detailed calculation

parameters can be found in Table S4 and the references
therein. Since the present work focused on the surface
processes only and there are no calculations of reactants in
the gas phase involved, the influence of xc-functionals on
corresponding barriers are modest.15 Moreover, the nature of
the multitask learning adopted here treats the different data
sources as distinctive tasks for joint feature selection,60,63

which was demonstrated in a recent work.64 As a result, the
influence arising from the inconsistency of multisource data
including but not limited to the xc-functionals is further
minimized.

2.3. Entangled Chemistry. The 2D physical model in eq
3 enables us to decipher the composition and geometry effects.
As a showcase, we investigated the NO dissociation on four
FCC surfaces including (111), (211), (311), and (110) and
five TMs including Au, Pd, Cu, Ni, and Co, which were not
included in the training set. We first project Ea to 1/ΔCN
(Figure 5a). The dependency for each TM is an excellent
linear relationship, as indicated by the different and well-
separated lines. With an increase of 1/ΔCN from (110) to
(111), the Ea increases by ∼0.73 eV for Cu and ∼0.99 eV for
Pd, due to their slightly different slopes. The offsets
representing different TMs are found to be considerably
different and downshift the lines as much as 3.2 eV from Au to
Co, which implies a great composition effect. Similarly, we
project the value of Ea to ΔE. As shown in Figure 5b, the
dependency for each facet is also a linear relationship, as
indicated by different but relatively crowded lines. With an
increase of ΔE from Co to Au, the Ea increases by 2.25 eV for
(111) and 2.53 eV for (211), with slopes varying from 0.67 to
0.62, respectively. The corresponding offsets (or intercept β)
representing differently orientated surfaces are found to change
relatively modestly. It downshifts the Ea by ∼0.7 eV from the
close-packed surface to the open surfaces, but the differences
between open surfaces are less than 0.1 eV, in line with
previous work.82,83 This shows again that the structure term
introduced is constructive to describe the reactivity across
broad composition and geometry space of catalysts.

The physical model developed above allows us to
disentangle the contribution from the structure and energy
terms, respectively. To demonstrate this, we use NO
dissociation as an example to decompose Ea into c1·Ne·a2/
ΔCN and c2·ΔE and plot it in Figure 5c. It can be found that the
structure term spans over 2 eV, whereas the energy term about
1 eV only. The two times larger value of the former one shows
unambiguously its importance to the overall barrier; namely,
the NO dissociation is structure sensitive. For diatomic
molecules of CO and N2, similar results were found as
indicated in Figure 5d. Note that in these 2D plots, the
corresponding coefficient c2 of ΔE varies from 0.25 to 0.34,
whereas the coefficient α before the ΔE in the BEP
relationship varies from 0.60 to 0.82 (Figure 5b and Table
S9). The two times larger coefficient indicates that the
importance of ΔE might be overestimated in the BEP
relationship, in compensating the absence of the explicit
structure term. For OH and NH radicals, Ea shows rather weak
dependence on the c1·Ne·a2/ΔCN, indicating that these bond
breakings are structurally less sensitive. Compared to CO, NO,
and N2, the corresponding coefficient c1 decreases by a factor
of ∼5, whereas c2 increases by a factor of ∼2 (Tables S8, S9).
Accordingly, the influence of the structure term decreases
dramatically, and the energy term becomes critical. In this case,

Figure 3. Data-driven eq 3 in plots. (a) Comparison of all the training
and test data between the model prediction and DFT calculation. (b
and c) Subsets for CO and CHxOHy (CH2OH, CH3O, CH2O,
CHOH, COH, and CHO), respectively, as extracted from (a).
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the 2D model behaves like the BEP relationship, and the
reactivity is decided mainly by the reaction energy.

In general, for small molecules/radicals, how the reaction
barrier are partitioned on the structure term and the energy

Figure 4. Transferability of eq 3 on unseen species on a variety of metal surfaces. (a) Parity plots for DFT-calculated and the SISSO-model-
predicted activation energy Ea of NH. (b−f) The cases for OH, N2, NO, CH3OH, and CHxCHy, respectively. For comparison, the RMSEs of the
BEP prediction are also shown in each panel.

Figure 5. Projection of the activation barrier Ea. (a) NO dissociation Ea against 1/ΔCN. Solid symbols: squares (Au), circles (Pd), upward triangles
(Cu), diamonds (Ni), and pentagons (Co). Colors: black (111), red (211), green (311), and blue (110). (b) NO dissociation Ea against ΔE. (c)
Comparison of the magnitude between c1·Ne·a2/ΔCN and c2·ΔE for their contributions to the Ea of NO dissociation. (d) Comparison of the
magnitude between the two terms for that of NO, CO, N2, OH, and NH. Colors denote the facets, and the circles denote the collection of available
dissociation data on all the considered metal catalysts.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.4c01524
J. Am. Chem. Soc. 2024, 146, 8737−8745

8742

https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c01524?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c01524?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


term identified above determines the structure sensitivity. A
larger projection and coefficient on the former one imply a
structure-sensitive reaction, whereas reactions are insensitive
with a larger projection and coefficient on the latter. For larger
molecules/radicals, where the steric hindrance might play a
role, the projection on these two terms and classification of
structure sensitivity or insensitivity might not be necessarily
clear in physics, but the 2D descriptor identified remains
excellent in predicting the reaction barriers.

■ CONCLUSIONS
By multitask symbolic regression with comprehensive first-
principles data, we developed a structure sensitivity theory for
metal catalysts that can be applied to a wide range of molecules
and radicals. The topological under-coordinated number
mediated by the lattice constant and number of valence
electron, which is site-specific, is discovered to describe
explicitly the structure sensitivity of a metal catalyst. A concise
2D descriptor comprising this structure term and the energy
term is developed to predict the reaction barrier. The theory
developed provides a constructive strategy not only to classify
the structure sensitivity but also to decipher the electronic and
geometric effects. The results highlight the importance of
transparency of data-driven theory in developing physical
models for the rational design of catalysts.
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