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Atomically intimate assembly of dual  
metal–oxide interfaces for tandem 
conversion of syngas to ethanol

Shang Li1,6, Li Feng1,6, Hengwei Wang    1  , Yue Lin    2, Zhihu Sun    3, Lulu Xu    1, 
Yuxing Xu1, Xinyu Liu4, Wei-Xue Li    1,5, Shiqiang Wei    3, Jin-Xun Liu    1,5   & 
Junling Lu    1,4 

Selective conversion of syngas to value-added higher alcohols (containing 
two or more carbon atoms), particularly to a specific alcohol, is of great 
interest but remains challenging. Here we show that atomically intimate 
assembly of FeOx-Rh-ZrO2 dual interfaces by selectively architecting highly 
dispersed FeOx on ultrafine raft-like Rh clusters supported on tetragonal 
zirconia enables highly efficient tandem conversion of syngas to ethanol. 
The ethanol selectivity in oxygenates reached ~90% at CO conversion  
up to 51%, along with a markedly high space-time yield of ethanol of 
668.2 mg gcat

−1 h−1. In situ spectroscopic characterization and theoretical 
calculations reveal that Rh-ZrO2 interface promotes dissociative CO 
activation into CHx through a formate pathway, while the adjacent Rh-FeOx 
interface accelerates subsequent C–C coupling via nondissociative CO 
insertion. Consequently, these dual interfaces in atomic-scale proximity 
with complementary functionalities synergistically boost the exclusive 
formation of ethanol with exceptional productivity in a tandem manner.

Higher alcohols (containing two or more carbon atoms, C2+) are impor-
tant feedstocks for fine chemicals, pharmaceuticals and fuel additives. 
Their production currently relies on sugar fermentation and/or the 
hydration of petroleum-derived alkenes1. With the growing global 
demand, the synthesis of C2+ alcohols from alternative carbon resources 
such as coal, natural gas and biomass via syngas (a mixture of CO and H2)  
has attracted long-standing interest1–3. This route requires multiple 
elementary reaction steps, including dissociative CO activation to form 
alkyl species (CHx*, where * denotes surface species), subsequent C–C 
coupling of CHx* to grow carbon chains, nondissociative CO insertion 
and stepwise hydrogenations2–4, leading to a broad product distribu-
tion, where complex oxygenate mixtures of various alcohols, aldehydes, 
esters and acids are generally produced. Owing to small differences 

in their boiling temperatures2,4,5, subsequent product separation and 
purification can be highly energy demanding. The delicate control of 
the above competing elementary reactions to exclusively produce a 
specific C2+ oxygenate, especially at high CO conversions, is highly 
desirable for practical applications but remains extremely challenging.

Ethanol (EtOH) is an essential commodity chemical with a global 
demand of 100 billion gallons annually2,4,6. Direct conversion of syn-
gas to EtOH requires only one step of C–C coupling, thus holding 
great potential for high selectivity. Incorporating transition metal 
or alkali metal promoters into documented Fischer–Tropsch syn-
thesis (FTS)7–10 or methanol synthesis (MS) catalysts2–4,11,12 is an effec-
tive approach to improve EtOH selectivity, while the highest EtOH 
selectivity in total oxygenates achieved so far was approximately 
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a cluster size of 1.1 ± 0.3 nm, along with a small fraction of isolated Rh 
atoms (Supplementary Figs. 2 and 3). Compared with isolated Rh atoms, 
the slightly stronger intensity observed in the Rh clusters suggested a 
two-dimensional raft-like structure comprising approximately one or 
two atomic layers36,37, since the intensity in Z-contrast STEM images is 
approximately proportional to the number of atomic layers38. Electron 
paramagnetic resonance (EPR) measurements revealed that surface 
defects serve as nucleation sites for Rh according to the disappearance 
of oxygen vacancies (VO, g = 2.002) after Rh loading39,40 (Supplemen-
tary Fig. 4).

Next, FeOx was selectively deposited on Rh clusters using atomic 
layer deposition (ALD) at 150 °C to fabricate the FeOx-Rh-ZrO2 
dual-interface catalysts41 (Fig. 1). To minimize the blockage of Rh-ZrO2 
interfaces by FeOx ALD, the Rh/ZrO2 catalyst was first exposed to eth-
ylene glycol (EG) to passivate the potential ALD nucleation sites on 
ZrO2, that is, hydroxyls, by forming stable alkoxides while leaving Rh 
sites intact42 (Supplementary Fig. 5); FeOx ALD was then performed 
on EG-pretreated Rh/ZrO2 for different numbers of cycles to tune 
the coverage of FeOx on Rh clusters (xFe-Rh/ZrO2, where x represents 
the number of ALD cycles); finally, EG was completely removed to 
re-expose the Rh-ZrO2 interfaces (Supplementary Fig. 6a). Inductively 
coupled plasma atomic emission spectroscopy (ICP-AES) analysis 
unambiguously verified the selective deposition of FeOx on Rh but 
not on ZrO2 (Supplementary Fig. 6b and Supplementary Table 3). 
X-ray diffraction (XRD) and TEM showed that there was no aggrega-
tion of Rh clusters during FeOx ALD (Supplementary Figs. 7 and 8).  
For comparison, nonselective FeOx ALD was also performed on unpre-
treated Rh/ZrO2 (6Fe-Rh/ZrO2-ns), which caused the partial blockage 
of Rh-ZrO2 interfaces (Supplementary Figs. 6b and 9). Rh/SiO2 and 
Rh/Fe2O3 catalysts with identical Rh contents were also synthesized 
using the same IWI method for comparison, in which the Rh particle 
sizes were 3.1 ± 0.8 nm and 2.8 ± 0.6 nm, respectively (Supplementary 
Figs. 10 and 11).

The catalytic performance of these Rh catalysts was evaluated 
in syngas conversions under identical conditions (260 °C, 2.5 MPa 
and H2:CO = 3:1). As shown in Fig. 2a, Rh/SiO2 exhibited a low CO con-
version of only 2.1% and an EtOH STY of 3.8 mg gcat

−1 h−1. By contrast,  
Rh/ZrO2 showed a much greater CO conversion of 14.6% and an EtOH 

53% at a CO conversion of 10%, to the best of our knowledge (Supple-
mentary Table 1). Alkali-promoted Mo-based catalysts have also been 
explored13–16 and achieved a markable EtOH selectivity of ~60% in oxy-
genates at a CO conversion of ~8% (ref. 15). In comparison, Rh catalysts 
with alkali promoters and/or Rh-M(Ox) (M = Mn, Fe, Zr and Ce) inter-
faces were found to be more favourable for EtOH synthesis2–4,17–29. Unfor-
tunately, high EtOH selectivity (>80%) has generally been achieved 
at low conversions (<5%) even with multiple promoters involved2,4 
(Supplementary Table 2). Tandem catalysis using multiple catalysts 
is another effective approach for achieving high selectivity5,30–32. For 
instance, Wang et al.5 reported a remarkably high EtOH selectivity 
of 95% in oxygenates at a CO conversion of 5.7% over tri-component 
tandem catalysts of K+-modified ZnO−ZrO2, H-MOR zeolite and  
Pt−Sn/SiC5. Consequently, there is an urgent need to overcome the severe  
activity–selectivity trade-off3,17, thus largely promoting the productiv-
ity of a specific C2+ alcohol with high selectivity.

In this Article, we report that the precise assembly of Rh-ZrO2 and 
Rh-FeOx interfaces in atomic-scale proximity on tetragonal zirconia 
(t-ZrO2) enables efficient tandem conversion of syngas to EtOH. The 
resulting dual-interface catalyst broke the activity–selectivity trade-off 
and achieved a high EtOH selectivity of up to 90% in oxygenates at an 
appreciable CO conversion of 51% as well as a high EtOH space-time 
yield (STY) of 668.2 mg gcat

−1 h−1, greatly outperforming those reported 
in the literature. In situ spectroscopic characterization and theoretical 
calculations revealed the atomic structure of the Rh-FeOx interfaces 
and further elucidated the molecular mechanism of tandem catalysis 
at the intimate FeOx-Rh-ZrO2 dual interfaces.

Results
Synthesis and catalytic performance
ZrO2 has been widely utilized in C1 chemistry owing to its unique surface 
basicity and hydrophilicity24,33,34. Here a t-ZrO2 support (90 m2 g−1) was 
first synthesized using the sol–gel method35 (Supplementary Fig. 1). A 
Rh/ZrO2 catalyst was then prepared using the incipient-wetness impreg-
nation (IWI) method with a Rh content of 3.3 wt%. Aberration-corrected 
high-angle annular dark-field scanning transmission electron micros-
copy (HAADF-STEM) and energy-dispersive spectroscopy (EDS) ele-
mental mapping revealed that Rh was highly dispersed on t-ZrO2 with 
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Fig. 1 | Schematic illustration of the synthesis of FeOx-Rh-ZrO2 dual-interface 
catalysts by selective FeOx ALD. Synthesis of ultrafine Rh raft-like clusters on 
t-ZrO2 using the IWI method; passivation of exposed ZrO2 surfaces by adsorption 
of EG through reaction with surface hydroxyls; selective deposition of one cycle 
of FeOx ALD on Rh clusters but not on EG-blocked ZrO2 surfaces by alternately 

exposing ferrocene (FeCp2) and O2 at 150 °C; precise regulation of FeOx coverages 
by varying the number of FeOx ALD cycles; and finally, removal of EG to re-expose 
Rh-ZrO2 interfaces to obtain dual intimate FeOx-Rh-ZrO2 interfacial catalysts 
through 400 °C H2 reduction. The green, purple, light blue, red (pink), grey and 
white balls represent Rh, Fe, Zr, O, C and H, respectively.

http://www.nature.com/naturenanotechnology


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-024-01824-w

STY of 46.1 mg gcat
−1 h−1, while the EtOH selectivity was still limited about 

54.6% in oxygenates. Clearly, Rh-ZrO2 interface is much more active 
than Rh-SiO2 interface and the Rh metal itself in CO activation43. In 
comparison, Rh/Fe2O3 exhibited a much greater STY of 112.6 mg gcat

−1 h−1  
along with a comparable CO conversion of 16.3% and a higher EtOH 

selectivity of 66.0% in oxygenates, suggesting that Rh-FeOx interface 
is active and more selective for C–C coupling to form EtOH, in line 
with the literature4,44–47. However, all these three catalysts inevitably 
produced a considerable amount of methanol with a selectivity of 
25–64% in oxygenates (Fig. 2a and Supplementary Table 4).
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Fig. 2 | Catalytic performance in syngas conversion. a, CO conversion, 
distributions of oxygenate products and STY of EtOH over Rh/SiO2, Rh/ZrO2,  
Rh/Fe2O3, 6Fe-Rh/ZrO2 and 6Fe-Rh/ZrO2-ns. Reaction conditions: 100 mg of 
catalyst, H2/CO = 3, 260 °C, 2.5 MPa, 9,000 ml g−1 h−1. b, Arrhenius plots of  
Rh/SiO2, Rh/ZrO2, Rh/Fe2O3 and 6Fe-Rh/ZrO2 measured at CO conversions less 
than 12%. c, Comparison of the EtOH distribution in oxygenates on 6Fe-Rh/ZrO2 
with those on Rh/SiO2, Rh/ZrO2 and Rh/Fe2O3 as a function of CO conversion by 
varying the WHSV from 9,000 ml g−1 h−1 to 60,000 ml g−1 h−1. Therein, for each 
catalyst, the lower the WHSV, the higher CO conversion was. Details are seen in 
Supplementary Table 5. Other representative state-of-the-art Rh-based, modified 

FTS, modified MS, Mo-based and tandem multicomponent catalysts are also 
cited for comparison. The blue dashed line is a guide for the eye. d, Comparison 
of the EtOH distribution in oxygenates versus the STY on 6Fe-Rh/ZrO2 with those 
on other state-of-the-art Rh-based, modified FTS, modified MS, Mo-based and 
tandem multicomponent catalysts. Reaction conditions: 100 mg of catalyst,  
H2/CO = 3, 260 °C, 2.5 MPa, 24,000 ml g−1 h−1. The detailed reaction conditions of 
referenced catalysts in c and d can be found in Supplementary Tables 1 and 2. The 
legends in d also apply for c. e, Stability test of 6Fe-Rh/ZrO2. Reaction conditions: 
100 mg of catalyst, H2/CO = 3, 260 °C, 2.5 MPa, 9,000 ml g−1 h−1.
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xFe-Rh/ZrO2 catalysts with FeOx-Rh-ZrO2 dual interfaces exhibited 
drastic promotion of catalytic performance. Therein, CO conversion 
exhibited a volcano-like trend with the FeOx coverage, reaching a maxi-
mum of 50.9% and an EtOH selectivity of 88.1% in oxygenates (32.6% in 
all products) on 6Fe-Rh/ZrO2. This greatly enhanced the EtOH STY to 
368.6 mg gcat

−1 h−1, which was approximately 97, 8 and 3 times greater 
than that of Rh/SiO2, Rh/ZrO2 and Rh/Fe2O3, respectively, and also 
2 times greater than that (175.1 mg gcat

−1 h−1) of 6Fe-Rh/ZrO2-ns with 
partially blocked Rh-ZrO2 interfaces (Fig. 2a, Supplementary Fig. 12 
and Supplementary Table 4). Kinetic measurements further revealed 
a substantially lower apparent activation energy of ~87.2 kJ mol−1 for 
6Fe-Rh/ZrO2 than those of Rh/ZrO2 (~105.2 kJ mol−1), Rh/Fe2O3 (107.5 kJ 
mol−1) and Rh/SiO2 (134.8 kJ mol−1) (Fig. 2b), as well as those reported in 
the literature (99–158 kJ mol−1)43, verifying the higher intrinsic activity. 
Impressively, the methanol selectivity of 6Fe-Rh/ZrO2 was only 7.8% in 
oxygenates (Supplementary Table 4).

Notably, physical mixing Rh/ZrO2 and Rh/Fe2O3 (denoted as Rh/
ZrO2 + Rh/Fe2O3) or depositing FeOx on a Rh nanoparticle (NP) cata-
lyst (6Fe-RhNPs/ZrO2) (Supplementary Fig. 13) all yielded low EtOH 
STYs of only 81.5–102.2 mg gcat

−1 h−1 (Supplementary Table 4). Coating 
Rh/Fe2O3 with FeOx (denoted as 6Fe-Rh/Fe2O3) or coating Rh/ZrO2 
with ZrO2 (denoted as 3Zr-Rh/ZrO2) to create additional Rh-FeOx or 
Rh-ZrO2 interfaces did not appreciably promote the performance 

either (Supplementary Figs. 14 and 15). Therefore, the assembly of dual 
interfaces with complementary functionalities in atomic-scale intimacy 
is of essential importance for dual-interface synergies.

We further varied the reaction pressure from 1 MPa to 4 MPa and 
the H2/CO ratio from 1 to 3 for the optimized 6Fe-Rh/ZrO2 catalyst. We 
found that the EtOH selectivity had very trivial changes (Supplemen-
tary Fig. 16). Decreasing the weight-hourly space velocity (WHSV) from 
60,000 ml gcat

−1 h−1 to 9,000 ml gcat
−1 h−1, the EtOH selectivity surprisingly 

maintained above 88% in oxygenates even at a CO conversion of 50.9% 
(Fig. 2c and Supplementary Table 5), sharply distinct from the rapid 
decline in EtOH selectivity on other three catalysts. The breakage of 
the activity–selectivity trade-off by dual-interface synergy boosted the 
single-pass yield of EtOH up to 16.6%, outperforming Rh-based catalysts 
reported so far (Supplementary Fig. 17 and Supplementary Table 2). 
Remarkably, under mild reaction conditions (Supplementary Tables 1 
and 2), the 6Fe-Rh/ZrO2 catalyst achieved a record high EtOH forma-
tion rate of 668.2 mg gcat

−1 h−1 at a CO conversion of 31.5% along with a 
selectivity of ~90% in oxygenates (35.8% in all products), far superior 
to that of state-of-the-art catalysts reported so far2,4,6,48 (Fig. 2d and 
Supplementary Fig. 18). More importantly, 6Fe-Rh/ZrO2 also exhibited 
excellent stability for at least 200 h without any Rh aggregation (Sup-
plementary Fig. 19) or visible decline in either activity or selectivity 
(Fig. 2e), demonstrating its great potential for practical applications.
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(c) and Rh + Fe signals (d). e, A representative aberration-corrected HAADF-STEM 
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chemisorption spectra of Rh/ZrO2 and 6Fe-Rh/ZrO2 at a saturation coverage. The 
blue, grey and red balls in i denote Rh, C and O atoms, respectively.
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Structural characterization
STEM-EDS elemental mapping showed that the Fe and Rh signals in 
6Fe-Rh/ZrO2 strongly overlapped with each other, confirming the 
selective deposition of FeOx on the Rh clusters (Fig. 3a–d). FeOx-coated 
Rh clusters showed an average diameter of 1.2 ± 0.2 nm (Fig. 3e and 
Supplementary Fig. 20) and their intensities were again only slightly 
stronger than those of the isolated Rh atoms (Fig. 3f–h), suggesting 
that the raft-like structure was preserved after FeOx decoration. Such 
highly dispersed, atomically thick features of FeOx-Rh rafts on ZrO2 not 
only allow maximization of Rh atom utilization but also make Rh-ZrO2 
and Rh-FeOx interfaces in atomic-scale proximity.

Diffuse reflectance infrared Fourier transform spectroscopy 
(DRIFTS) of CO chemisorption on Rh/ZrO2 showed that there were 
two dominant peaks at ~2,086 cm−1 and ~2,010 cm−1 and two weaker 
peaks at 2,066 cm−1 and ~1,846 cm−1, assigned to geminal dicarbonyl 
CO adsorbed on highly dispersed Rh atoms35,49, as well as linear- and 
bridge-bounded CO on larger Rh ensembles20,21,35,49. The much stronger 

intensities of geminal dicarbonyl CO peaks suggest the high dispersion 
of Rh species, consistent with the STEM observations (Supplementary 
Fig. 2). For FeOx-coated Rh/ZrO2 catalysts, the intensities of linear- and 
bridge-bonded CO peaks attenuated more rapidly than those of gemi-
nal dicarbonyl CO peaks as FeOx ALD cycles increased and completely 
vanished on 6Fe-Rh/ZrO2 (Fig. 3i and Supplementary Fig. 21), demon-
strating the tuning of Rh-FeOx interfaces.

To determine the structure of Rh-FeOx interfaces under realistic 
reaction conditions, in situ X-ray absorption spectroscopy (XAS) meas-
urements were further conducted. At the Fe K-edge, after H2 reduction 
of the pristine sample (6Fe-Rh/ZrO2-O) at 400 °C (6Fe-Rh/ZrO2-R), the 
pre-edge peak at 7,115 eV, corresponding to a 1s–3d transition of Fe3+ 
oxide41, disappeared along with a downshift of absorption edge even 
slightly lower than that of FeO reference (Fig. 4a and Supplementary 
Fig. 22). Switching to syngas at 260 °C (6Fe-Rh/ZrO2-S), the pre-edge 
peak reappeared and the absorption edge resembled that of FeO, indi-
cating slight re-oxidation of Feδ+ (0 < δ < 2) to Fe2+. At the Rh K-edge, the 
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absorption edges of 6Fe-Rh/ZrO2-R and 6Fe-Rh/ZrO2-S both resembled 
that of Rh foil, suggesting that the majority of Rh was in a Rh0 metallic 
state under reaction conditions (Fig. 4b).

The extended X-ray absorption fine structure (EXAFS) spectra 
showed that compared with that of 6Fe-Rh/ZrO2-O (Supplementary 
Fig. 23), the Fe–O peak of 6Fe-Rh/ZrO2-R and 6Fe-Rh/ZrO2-S both 
decreased remarkably (Fig. 4c), with a coordination number (CN) 
of 1.7–2.3 (Supplementary Fig. 24 and Supplementary Table 6). The 
new peak at 2.32 Å is attributed to Fe–Rh coordination according to 
wavelet-transform (WT) analysis (Supplementary Fig. 25 and Sup-
plementary Table 6). Meanwhile, the absence of Fe–Fe coordination 
peak (>2.5 Å) implies that the majority of Fe oxo were atomically dis-
persed under reaction conditions. At the Rh K-edge, 6Fe-Rh/ZrO2-R 
and 6Fe-Rh/ZrO2-S both showed a broad Rh–Rh coordination peak 
at 2.39 Å with a CN of ~6.5 (Fig. 4d, Supplementary Figs. 26 and 27 and 
Supplementary Table 7), similar to that of bare Rh/ZrO2 (6.4–6.8) (Sup-
plementary Figs. 28 and 29 and Supplementary Table 8), which agrees 
well with the ‘raft-like’ structure of Rh clusters since the Rh–Rh CN is 
expected to be greater than 8 for three-dimensional NPs21,50,51. Notably, 

whether Rh-FeOx interface or RhFe alloy as the active sites has been 
intensively debated for decades26,44,47,50–52. Here the above data firmly 
excluded the possibility of RhFe alloy formation50,51 and further sup-
ported by quasi in situ XPS measurements (Supplementary Fig. 30).

Spectroscopic insights into syngas conversion
In situ DRIFTS measurements were performed to obtain insights 
into the dual-interface synergy. After introducing CO at 260 °C, we 
observed two CO peaks at 2,055 cm−1 and 1,935 cm−1 on Rh/SiO2 (refs. 
20,43) (Fig. 5a). By contrast, strong formate peaks (HCOO*, 2,966 cm−1, 
2,874 cm−1, 1,568 cm−1 and 1,384 cm−1)21,35,53 along with a broad negative 
hydroxyl peak centred at 3,723 cm−1 were observed on t-ZrO2 (Fig. 5a and 
Supplementary Fig. 31)35,53. Interestingly, these formate peaks became 
much stronger on Rh/ZrO2 and 6Fe-Rh/ZrO2 along with the CO peaks at 
2,044 cm−1 and 1,830 cm−1, suggesting that formate species are more 
favourably formed at Rh-ZrO2 interfaces.

Switching CO to H2, the CO peaks on Rh/SiO2 decreased slowly. 
Neither methoxy (a key intermediate for methanol, CH3O*) nor meth-
ane was observed (Supplementary Fig. 32). For Rh/ZrO2, the CO peaks 
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decreased rapidly in H2, while the peaks of HCOO*, CH3O* (2,925 cm−1) 
and gaseous CH4 (3,015 cm−1) all slightly increased at the early stage 
and then decreased gradually with time (Fig. 5b,d). Clearly, CO hydro-
genation is difficult at either Rh-SiO2 interfaces or on Rh metal surfaces 
but readily occurs at Rh-ZrO2 interfaces via the formate pathway (no 
reaction on bare t-ZrO2, seen in Supplementary Fig. 31), in line with 
the observed much higher catalytic activity of Rh/ZrO2 than Rh/SiO2 
(Fig. 2a).

On 6Fe-Rh/ZrO2, switching CO to H2 led to a much quicker decrease 
in HCOO* (Fig. 5c,d). Meanwhile, CH3O* decreased instantly without 
any accumulation at the early stage, in sharp contrast to that of Rh/
ZrO2 (Fig. 5d). Given the competition between HCOO* hydrogenation 

to CH3O* or to CHx* at Rh-ZrO2 interface, such suppression of CH3O* 
formation implies a shift of reaction path to HCOO* → CHx*. Such a 
shift is likely attributed to an accelerated consumption of CHx* via C–C 
coupling with adsorbed CO* to form EtOH at the adjacent Rh-Fe1O2 
interfaces, and was further supported by a faster consumption of CO* 
on 6Fe-Rh/ZrO2 than on Rh/ZrO2 (Supplementary Fig. 33). In addition, 
after switching to H2, hydroxyl groups were recovered on both Rh/ZrO2 
and 6Fe-Rh/ZrO2 (Fig. 5b,c), closing the catalytic cycle.

Theoretical insights
Density functional theory (DFT) calculations were further conducted 
to gain deeper insights into dual-interface synergy. According to the 
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presence of hydroxyls and VO on t-ZrO2 (Fig. 5a and Supplementary 
Fig. 4), the most stable (101) plane of t-ZrO2 with hydroxyl groups and 
VO was adopted as a support to construct the dual-interface model35,53–55. 
We found that Rh20 clusters tend to bind strongly to defective t-ZrO2(101) 
by forming a flat structure with a thickness of two atomic layers and a 
diameter of 1.18 nm according to genetic algorithms56,57 (Supplemen-
tary Figs. 34 and 35), and enhanced charge transfers at the interface 
based on Bader charge analysis (Supplementary Fig. 36), which agrees 
excellently with the experimental results (Fig. 4b and Supplementary 
Figs. 2, 4 and 30). After testing a single Fe atom with various possible 
O, OH and CO ligands on the Rh20 cluster under reaction conditions, we 
found that the isolated Fe1Ox motif preferentially binds at the Rh bridge 
sites of the Rh20 cluster, with the Fe atom coordinated to two Rh atoms 
and two tilted CO molecules (denoted as Fe1(CO)2/Rh20/t-ZrO2(101)) 
(Fig. 6a and Supplementary Figs. 37 and 38). The two Fe–Rh bonds and 
two Fe–O bonds have average bond lengths of approximately 2.58 Å 
and 1.99 Å, respectively, which all align excellently with the XAFS results 
(Supplementary Tables 6 and 7). As a reference, we also constructed a 
Rh(211) surface to model the Rh/SiO2 catalyst (Supplementary Fig. 39).

CO activation is commonly considered as the rate-determining 
step in this reaction on Rh catalysts43,58,59. On Rh(211), we found that 
hydrogen-assisted CO activation via the HCO* intermediate is more 
favourable than direct dissociation (Supplementary Figs. 40 and 41 
and Supplementary Tables 9 and 10), but still notably endothermic 
by 0.77 eV and with a high barrier of 1.80 eV (Fig. 6b). At Rh-FeOx inter-
faces, hydrogen-assisted CO activation is considerably facilitated, with 
a reduced reaction energy of 0.08 eV and a barrier of 1.52 eV (Fig. 6b, 
Supplementary Figs. 42 and 43, and Supplementary Table 10), owing 
to the enhanced adsorption of HCO* and O* intermediates (Supple-
mentary Fig. 44 and Supplementary Table 9). On t-ZrO2(101), direct 
and hydrogen-assisted dissociation are both thermodynamically 
unfavourable (Supplementary Table 10). By contrast, we found that 
strongly adsorbed CO* (ECO = −1.92 eV) can readily react with OH* to 
form COOH* and then transform to HCOO* with a moderate barrier of 
1.19 eV (Fig. 6c). Next, HCOO* exothermically migrates to the Rh-ZrO2 
interface owing to the increased adsorption energy from −1.91 eV 
to −3.47 eV, in line with the DRIFTS observation of much stronger 
HCOO* intensities on Rh/ZrO2 and 6Fe-Rh/ZrO2 than on bare t-ZrO2 
(Fig. 5a). Next, HCOO* species dissociate sequentially to HCO* and 
then CH* at the Rh-ZrO2 interface with a barrier of 1.33 eV at most 
(Fig. 6c, Supplementary Figs. 47 and 48 and Supplementary Table 11). 
Therefore, compared with Rh metal and Rh-FeOx interface, Rh-ZrO2 
interfaces are more active for converting of CO to CHx*, where the 
hydroxylated t-ZrO2 support serves as a HCOO* reservoir to boost  
the reaction.

Regarding C–C coupling, CO* insertion into CH3* is found to be 
the most favourable path for Rh(211), Rh-FeOx and Rh-ZrO2 interface 
(Supplementary Figs. 49–55 and Supplementary Tables 12 and 13). 
Nonetheless, on Rh(211), CO* insertion into CH3* to form CH3CO*, a 
key intermediate for EtOH, is much less favourable than direct CH3* 
hydrogenation to methane (Fig. 6d, Supplementary Figs. 49–52 and 
Supplementary Tables 12 and 13), which makes methane to be the pref-
erential product over Rh metal surfaces as observed on Rh/SiO2 (Sup-
plementary Table 4). However, at Rh-FeOx interfaces, the adsorption of 
CH3CO* is much stronger than that of CH3CO* on Rh(211) owing to the 
enhanced orbital hybridization and considerable charge transfer from 
Fe to CH3CO* (Fig. 6e and Supplementary Table 9). Consequently, CO 
insertion into CH3* to form CH3CO* becomes exothermic by −0.23 eV 
at Rh-FeOx interfaces, along with a much low barrier of 0.80 eV, which 
is energetically more favourable than the hydrogenation of CH3* 
(endothermic by 0.10 eV; Fig. 6d, Supplementary Figs. 49, 53 and 54, 
and Supplementary Tables 12 and 13). At Rh-ZrO2(101) interfaces, CO* 
insertion into CH3* to form CH3CO* is found to be less feasible (Fig. 6d, 
Supplementary Figs. 49 and 55 and Supplementary Tables 12 and 13). 
In brief, among these three types of reaction sites, Rh-FeOx interfaces 

appear to be the most favourable sites for C–C coupling, which agree 
excellently with the observation of markedly higher EtOH selectivity of 
Rh/Fe2O3 and xFe-Rh/ZrO2 as well as the suppression of CH3O* forma-
tion in the DRIFTS results (Figs. 2a and 5d).

To achieve high EtOH yields in syngas conversion, it is crucial 
to ensure the balance of the two key elementary reaction steps: CO 
activation to CHx* and subsequent C–C coupling via the insertion 
of CO* into CHx*, both with high efficiency. As demonstrated by our 
calculations, the dual-interface synergy enables a tandem reaction 
process, that is, the Rh-ZrO2 interface can efficiently activate CO* to 
form CHx* via the formate path with the ZrO2 support as a formate 
reservoir; then, the formed CHx* readily couples with another CO* 
molecule to form CH3CO* intermediates at the adjacent Rh-FeOx 
interfaces, thus synergistically boosting exclusive EtOH formation 
(Fig. 6f). Therein, the variation of the FeOx coverage (Supplementary 
Fig. 21) allows balancing the kinetics of these two key elementary reac-
tions (Supplementary Fig. 12), thus achieving a remarkably high EtOH  
productivity.

Conclusion
In summary, we have demonstrated that the precise decoration of 
atomically dispersed FeOx onto ultrafine Rh rafts in Rh/ZrO2 to assem-
ble dual FeOx-Rh-ZrO2 interfaces intimately enables efficient tandem 
conversion of syngas to EtOH by achieving an EtOH selectivity of ~90% 
in total oxygenates at an appreciable conversion of 51%, along with a 
remarkably high STY of 668.2 mg gcat

−1 h−1. In situ spectroscopic char-
acterization and DFT calculations reveal that Rh-ZrO2 and Rh-FeOx 
interfaces play complementary roles in the reaction by facilitating CO 
activation and C–C coupling, respectively. The delicate assembly of 
these two interfaces in atomic-scale proximity finely tailors the balance 
of the kinetics of the two key elementary reactions, thus synergistically 
boosting the exclusive EtOH formation in a tandem manner. These 
findings point out a new way to rationally design highly active and 
selective metal catalysts for complex reactions by assembling dual/
multiple metal–oxide interfaces with specific functions in atomic-scale 
proximity.
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Methods
Chemicals and materials
Zirconium n-propoxide (70 wt% in n-propanol), rhodium nitrate 
solution (Rh(NO3)3, 5 wt% solution), ferrocene (FeCp2) and 
tetrakis(dimethylamido)zirconium (Zr(NMe2)4) were purchased 
from Sigma-Aldrich. Ammonia solution (NH3·H2O, 25–28%), EG 
and n-propanol (>99.9%) were purchased from Sinopharm Chemi-
cal Reagent. All the chemicals were directly used without further 
purification.

All gases, including ultrahigh-purity N2 (99.999%), Ar (99.999%), 
mixtures of 10% O2 in Ar, 10% H2 in Ar, and 10% Co in Ar and CO feed 
gases (24% CO, 72% H2; 30% CO, 60% H2; 45% CO, 45% H2; all balanced 
with Ar), were provided by Nanjing Special Gases.

Synthesis of ZrO2 support
The tetragonal zirconia support was synthesized via a sol–gel method. 
Typically, 17.7 g of zirconium n-propoxide was diluted by adding 51.6 ml 
of n-propanol. Aqueous ammonia was added dropwise to the zirconia 
precursor solution with vigorous stirring until the pH reached 10–10.5, 
after which the mixture was kept for 1 h. The resulting gel was filtered 
and dried at 100 °C for 10 h. Finally, the dried sample was calcined at 
400 °C in air for 4 h to obtain the ZrO2 support.

Synthesis of Rh/ZrO2, Rh/SiO2, Rh/Fe2O3 and RhNPs/ZrO2

Rh/ZrO2 was prepared by the IWI method. First, 420 μl of Rh(NO3)3 
solution was added to 100 μl of deionized water. Next, 600 mg of ZrO2 
was impregnated into the above Rh aqueous solution with 30 min of 
stirring, after which the mixture was dried at 70 °C overnight. Finally, 
the obtained yellow powder was calcined at 400 °C in air for 3 h to 
obtain the Rh/ZrO2 catalyst. Rh/SiO2 and Rh/Fe2O3 were also synthe-
sized through the same IWI method described above for comparison. 
Meanwhile, a Rh NP catalyst (RhNPs/ZrO2) was also synthesized by the 
deposition–precipitation method followed by chemical reduction 
using sodium borohydride (NaBH4) as the reducing agent. Typically, 
420 μl of Rh(NO3)3 solution and 600 mg of ZrO2 were co-added into 
25 ml of deionized water and mixed under vigorous stirring at 80 °C 
for 0.5 h. Ammonia was added dropwise to adjust the pH value to 12. 
Then, 1 ml of 1 mol l−1 NaBH4 was quickly added into the above suspen-
sion and kept vigorous stirring for 12 h. The precipitate was centrifuged 
and washed with deionized water and dried at 60 °C overnight. Finally, 
the dried dark yellow powder was calcined in 10% O2 in Ar at 400 °C for 
3 h and then reduced at the same temperature for another 1 h in 10% H2 
in Ar to obtain the RhNPs/ZrO2 catalyst.

Synthesis of the xFe-Rh/ZrO2 catalysts
To achieve selective FeOx deposition on Rh NPs instead of on a ZrO2 
support for the subsequent synthesis of xFe-Rh/ZrO2 catalysts, the 
as-prepared Rh/ZrO2 catalyst was first modified with EG to passivate 
the possible nucleation sites on the ZrO2 surface. Typically, the Rh/
ZrO2 catalyst was dispersed into EG and stirred for 12 h at 30 °C. The 
suspension was then centrifuged and dried at 70 °C overnight to obtain 
the modified catalyst.

FeOx ALD was carried out on the resulting EG-pretreated Rh/ZrO2 
catalyst at 150 °C using FeCp2 and ultrahigh-purity O2 (99.999%) in an 
ALD reactor (ALD-V401-PRO, ACME (Beijing) Technology). The FeCp2 
precursor container was heated to 80 °C to achieve sufficient vapour 
pressure. The timing sequences were 300 s, 300 s, 200 s and 300 s for 
FeCp2 exposure, N2 purge, O2 exposure and N2 purge, respectively. Dif-
ferent cycles of FeOx ALD were carried out to obtain a series of xFe-Rh/
ZrO2 catalysts (x represents the number of ALD cycles). For comparison, 
6 cycles of FeOx ALD were also applied to Rh/Fe2O3 and RhNPs/ZrO2 to 
obtain the 6Fe-Rh/Fe2O3 and 6Fe-RhNPs/ZrO2 catalysts, respectively. As 
a control experiment, FeOx ALD was also performed on the bare ZrO2 
and EG-modified ZrO2 substrates for different cycles under the same 
ALD conditions.

Synthesis of the xZr-Rh/ZrO2 catalysts
ZrO2 ALD was carried out on the Rh/ZrO2 catalyst at 200 °C using 
Zr(NMe2)4 and deionized water in the same ALD reactor. The Zr(NMe2)4 
precursor container was heated to 75 °C to achieve sufficient vapour 
pressure. The timing sequences were 200 s, 300 s, 200 s and 300 s for 
Zr(NMe2)4 exposure, N2 purge, H2O exposure and N2 purge, respectively. 
One and three cycles of ZrO2 ALD were carried out to obtain the 1Zr-Rh/
ZrO2 and 3Zr-Rh/ZrO2 catalysts, respectively.

Morphology and composition
TEM and HR-TEM measurements were performed on a JEM-2100F 
instrument operated at 200 kV to characterize the morphology of 
these samples. Aberration-corrected HAADF-STEM measurements 
were performed on an instrument at 200 kV ( JEM-ARM200F, Univer-
sity of Science and Technology of China). Elemental mapping via EDS 
was performed on the same equipment. The Rh and Fe contents of the 
various catalysts were analysed via ICP-AES (PerkinElmer Optima 7300 
DV). Powder XRD measurements were carried out on a Philips X’Pert 
Pro Super diffractometer with Cu Kα radiation operated at 40 kV and 
50 mA. The patterns were measured in the 2θ range from 20° to 80°. EPR 
spectroscopy was performed on a JES-FA200 EPR spectrometer oper-
ated at an X-band frequency of 9.1 GHz, a microwave power of 1 mW and 
a modulation frequency of 100 kHz. Thermogravimetric analysis (TGA) 
was performed on a TGA550 instrument (TA Instruments) equipped 
with an evolved gas analysis furnace. After loading the sample into the 
furnace, the sample was heated to 500 °C at a heating rate of 3 °C min−1 
in 10% O2 in N2 (25 ml min−1). CO pulse chemisorption measurements 
were performed on a Micromeritics Autochem II 2920 instrument. In 
brief, ~40 mg of the sample was loaded in a quartz U-tube and calcined 
in 10% O2 in Ar followed by a reduction in 10% H2 in Ar at 150 °C for 2 h. 
Next, the sample was cooled to room temperature, and CO pulses (10% 
CO in He) were introduced to the sample until saturation.

In situ XAS
In situ XAS measurements at the Fe K-edge (7,112 eV) and Rh K-edge 
(23,220 eV) were performed in fluorescence mode with a Si(111) mono-
chromator at the 1W1B beamline of the Beijing Synchrotron Radiation 
Facility (BSRF) and in transmission mode with a Si(311) monochromator 
at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility 
(SSRF) in China, respectively, considering the loadings of Fe and Rh. 
The storage ring of the BSRF worked at 2.5 GeV with a maximum current 
of 250 mA, and the storage ring of the SSRF worked at 3.5 GeV with a 
maximum current of 210 mA. A homemade reaction cell was used for 
the in situ experiments, which allows exposing the sample to differ-
ent pretreatment gases or reaction gases, as well as sample heating 
to 500 °C. Typically, the as-prepared 6Fe-Rh/ZrO2 sample was com-
pressed into tablets and put into the reaction cell. After purging with 
He for 10 min at room temperature, the XAFS spectra were recorded 
and denoted as 6Fe-Rh/ZrO2-O. After that, the sample was reduced in 
10% H2 in He at 400 °C for 1 h and then cooled to 260 °C for 10 min. The 
XAFS spectrum was recorded and denoted as 6Fe-Rh/ZrO2-R. Finally, 
the same sample was exposed to syngas consisting of 24% CO and 72% 
H2 balanced with He at 260 °C for another 1 h, and the XAFS spectra were 
sequentially recorded and denoted as 6Fe-Rh/ZrO2-S. The acquired 
XAS data were processed according to standard procedures using 
the ARTEMIS module implemented in the IFEFFIT software package. 
The EXAFS oscillation functions χ(k) were obtained by subtracting the 
post-edge background from the overall absorption spectra and then 
normalizing with respect to the edge-jump step.

In situ XPS
In situ XPS measurements were conducted at the BL10B beamline 
Photoemission End-station at the National Synchrotron Radiation 
Laboratory (NSRL) in Hefei, China. In brief, the beamline is connected to 
a bending magnet and covers photon energies from 100 eV to 1,000 eV. 
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The end-station consists of four chambers, that is, an analysis cham-
ber, a preparation chamber, a quick sample load lock chamber and a 
high-pressure reactor. The analysis chamber, with a base pressure of 
<5 × 10−10 torr, is connected to the beamline and equipped with a VG 
Scienta R3000 electron energy analyser and a twin anode X-ray source. 
After sample treatment, the reactor was pumped down to high vacuum 
(<10−8 torr) for sample transfer. In the current work, the sample was 
first reduced with the flowing 10% H2 in Ar at 400 °C for 1 h followed by 
treatment in syngas (24% CO, 72% H2, 4% Ar) (20 ml min−1) at 260 °C for 
another 1 h at the ambient pressure in the high-pressure reactor. Next, 
the sample was transferred to the analysis chamber for XPS measure-
ments in the Fe 2p and Rh 3d region without exposing to air.

DRIFTS of CO chemisorption measurements
DRIFTS of CO chemisorption was performed on a Nicolet iS10 spec-
trometer equipped with a mercury-cadmium-telluride detector and 
a low-temperature reaction cell (Praying Mantis Harrick). After load-
ing a sample into the cell, it was reduced under 10% H2 in Ar at 360 °C 
(the highest temperature that we can reach) for 2 h. After cooling the 
sample to room temperature in Ar, a background spectrum was col-
lected. Subsequently, the sample was exposed to 10% CO in Ar (20 ml 
min−1) for approximately 30 min until saturation. Next, the sample 
was purged with Ar (20 ml min−1) for another 30 min to remove the 
gas-phase CO, after which the DRIFT spectrum was collected with 256 
scans at a resolution of 4 cm−1.

In situ DRIFTS of CO hydrogenation
In situ DRIFTS was performed on the same instrument described 
above. After loading a sample into the cell, it was reduced in 10% H2 in 
Ar at 360 °C for 2 h. Then, the sample was cooled to 260 °C in Ar, and 
a background spectrum was collected. Next, the sample was exposed 
to 10% CO in Ar (20 ml min−1, 0.1 MPa) at the same temperature. After 
a 20 min reaction, the inlet was switched to Ar for another 20 min to 
remove the gaseous CO. Next, the inlet was subsequently switched 
to 10 H2 in Ar (20 ml min−1). Moreover, DRIFTS spectra were recorded 
to monitor the changes in the intensities of different surface species 
during the entire process.

Catalyst evaluation
The conversion of syngas was carried out in a stainless-steel tubular 
fixed-bed reactor (Anhui CHEM Machinery Technology) equipped with 
a quartz lining with an inner diameter of 10 mm. In a typical reaction, 
100 mg of Rh-based catalyst mixed with 1 g of quartz sand (30–60 mesh) 
was loaded into the reactor and reduced in 10% H2 in N2 (30 ml min−1) at 
400 °C for 2 h. After reduction, the sample was cooled to 260 °C, and 
then, syngas (24% CO, 72% H2) with 4% Ar as an internal standard was 
introduced into the reactor and pressurized slowly to 2.5 MPa. The data 
were collected after at least 2 h on stream. Products were analysed by an 
online GC (Panna A91 PLUS). A capillary column (PLOT-Q) connected to 
a flame ionization detector (FID) was used to analyse CH4, C2–4 paraffins 
and oxygenated products; a TDX-01 packed column connected with a 
thermal conductivity detector (TCD) was used to analyse CO, CO2, Ar 
and CH4. CH4 was taken as a reference bridge between the FID and TCD.

CO conversion (X(CO)) was calculated on a carbon atom basis, 
that is,

X (CO) = COin − COout
COin

× 100% (1)

where COin and COout in equation (1) represent the moles of CO at the 
inlet and outlet, respectively.

The CO2 selectivity (S(CO2)) was calculated according to

S (CO2) =
CO2out

COin − COout
× 100% (2)

where CO2outt in equation (2) represents moles of CO2 at  
the outlet.

The selectivity S for each organic product i was determined on the 
basis of the number of C atoms by equation (3), where ni in equation 
(3) represents the moles of product i at the outlet and Ci is the carbon 
number of product i. The carbon balance over the Rh-based catalysts 
was greater than 98%.

Si =
niCi

∑ni, jCi, j
× 100% (3)

The STY of EtOH was calculated according to

STY (EtOH) = FCOS (EtOH)
2 ×W × 46 (4)

where FCO denotes the molar number of converted CO molecules per 
unit time (mmol(C) h

−1) and w denotes the weight of the catalyst.

Computational methods
All spin-polarized DFT calculations were performed by using 
the Vienna Ab initio Simulation Package (VASP)60. Projec-
tor augmented wave61 potentials and the generalized gradi-
ent approximation (GGA) with the Perdew–Burke–Ernzerhof 
exchange-correlation functional62 were used. The kinetic energy 
cut-off was specified to be 400 eV. Electronic optimizations were 
converged to 10−4 eV per atom, and the geometry optimizations were  
considered to be converged until the forces on each ion were less 
than 0.05 eV Å−1. The optimized lattice parameters for bulk t-ZrO2 
are a = b = 3.66 Å and c = 5.25 Å, which are in line with the experi-
mental values of a = b = 3.61 Å and c = 5.21 Å (ref. 63). The strongly 
correlated 4d orbital of Zr was treated with the GGA + U correc-
tion with Ueff = 4 eV, which has been suggested in other theoretical 
works. The calculated equilibrium lattice constants for FCC Rh are 
a = b = c = 3.82 Å, which are consistent with the experimental values of  
3.80 Å (ref. 64).

The most stable t-ZrO2(101) facet with one isolated hydroxyl 
group and one oxygen vacancy was used to simulate the pristine 
defective, hydroxylated t-ZrO2 surface according to the EPR and 
DRIFTS measurements (Supplementary Figs. 4 and 31), where a 
p(4 × 3) supercell slab with a two-layer oxide thickness was used. 
The adsorbates and the topmost oxide are relaxed. The stepped 
Rh(211) surface is modelled using a p(3 × 2) slab with five atomic lay-
ers, including 60 Rh atoms. During optimization, the adsorbates and 
the top three layers of Rh atoms are relaxed. The neighbouring slabs 
were separated by a 15 Å vacuum to avoid interactions between them. 
Monkhorst–Pack k-point meshes of 1 × 2 × 1 and 2 × 3 × 1 were used to 
sample the Brillouin zones of the t-ZrO2(101) and Rh(211) supercell 
surface slab models, respectively.

The improved force reversal method65 was used to identify the 
transition states (TS) via vibrational analysis until all the forces were less 
than 0.05 eV Å−1. Some of the TSs were determined by climbing-image 
nudged elastic band (CI-NEB)66 and dimer methods67. The adsorp-
tion energy is calculated as Eads = Eadsorbate/slab − Eslab − Eadsorbate, where  
Eadsorbate/slab and Eslab are the total energies of the slab with the adsorb-
ate and the clean surface, respectively, and Eadsorbate is the energy of 
the adsorbate in the gas phase. The reaction energy and barrier were 
calculated by ΔE = EFS − EIS and Ea = ETS − EIS, where EIS, EFS and ETS are the 
energies of the corresponding initial state, final state and transition 
state, respectively. The structure of Rh20/t-ZrO2(101) was obtained by 
a genetic algorithm.

Data availability
All data that support the findings of this study are available in the 
main text, figures and Supplementary Information, or from the 
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corresponding authors upon reasonable request. Source data are 
provided with this paper.
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