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ABSTRACT: Identifying the intrinsic activity of the distinct sites which coexist in oxide-
supported metal particles is vital but challenging for rational design of catalysts. We treat the
challenge here by density functional theory calculations to differentiate unbiasedly the
intrinsic reactivity of a variety of sites observed under reaction conditions for methanol
steam reforming on Cu/ZnO catalyst. Metallic Cu and CuZn alloy are found to be less
active but highly selective toward formaldehyde because water dissociation is demanding,
which limits the formation of hydroxyl and subsequent coupling necessary to yield CO2.
Cu/ZnO interface is highly active and selective for H2/CO2 because of its superior activity
for water and methanol activation. Distinct hydrogen affinity at Cu/ZnO interface also leads
to more favorable CO2 production via H2COO, in contrast to via HCOOH at (bi)metallic
sites. The distinct reactivity of various structural motifs exposed and the importance of the metal/oxide for selectivity revealed is
valuable for optimal design of catalysts.

1. INTRODUCTION

Methanol steam reforming (MSR) provides a promising
scheme for generation of hydrogen in various important
processes, such as fuel cells and hydrogenolysis of biomass-
based compounds.1−3 In this reaction, the high H2 and CO2

selectivities are critical to avoid the poisoning of the fuel-cell Pt
anode by CO byproduct and to maximize the hydrogen
yield.4−6 The Cu/ZnO catalyst originally designed for
methanol synthesis exhibits high activity and selectivity toward
H2 and CO2 for MSR. However, the coexistence of a variety of
structural motifs/sites, such as Cu, ZnO, CuZn alloy, and Cu/
ZnO interface, results in the identification of active sites to be
elusive.7−12 For methanol synthesis on Cu/ZnO, there are
similar structural motifs coexisting under reaction conditions,
and it remains a hot topic of debate, along with which sites are
the active sites.13−18This severely prevents the mechanistic
understanding and rational design of catalysts. So far, preparing
the supported metal particles with identical sites still represents
a significant challenge in catalyst synthesis. The site
homogeneity might be worsened further by considering
strong-metal-support interaction, which leads to the formation
of various uncontrolled boundaries and dynamic response of
the supported catalysts under reaction conditions, such as
(de)alloying, reactant-induced segregation, oxidation, and
reduction just to name a few. We treat the challenge here by
density functional theory (DFT) calculations to differentiate

unbiasedly the intrinsic reactivity of the various structural
motifs/sites observed under reaction conditions.
In MSR, the main detected products include CO, CH2O,

CO2, and H2.
19 Among these, CH2O and CO come from the

partial and complete dehydrogenation of CH3OH.
20−23 In the

case of CO2/H2 formation, it is generally suggested to be
through the reaction of H2O with CO from methanol
decomposition, and the CO2 selectivity is determined by the
reaction balance of water gas shift reaction.7,8,24 Alternatively, a
more favorable pathway has been reported recently,25−28 where
CH2O* produced by methanol partial dehydrogenation can
recombine with OH* or O* from water dissociation, leading to
the formation of hydroxyl methoxy (H2COOH*) or dioxo-
methylene (H2COO*) intermediate. The intermediates then
dehydrogenate sequentially to CO2, and for H2COOH*
dehydrogenation discrepancy exists between an initial O−H
bond scission (via H2COO*) and C−H bond scission (via
HCOOH*).
To differentiate the intrinsic MSR reactivity on the various

sites of Cu/ZnO catalyst observed under reaction conditions,
we present an unbiased DFT study of MSR pathway on
Cu(111), CuZn alloy, and Cu/ZnO interface (see Computa-
tional Methods section for a more detailed description of the

Received: August 3, 2017
Revised: September 12, 2017
Published: September 19, 2017

Article

pubs.acs.org/JPCC

© 2017 American Chemical Society 21553 DOI: 10.1021/acs.jpcc.7b07703
J. Phys. Chem. C 2017, 121, 21553−21559

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 S

C
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 C
H

IN
A

 o
n 

M
ay

 5
, 2

01
9 

at
 0

3:
42

:4
7 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/JPCC
http://dx.doi.org/10.1021/acs.jpcc.7b07703


models). Since CuZn alloy has been shown to be formed
preferentially on stepped Cu,16,29 we use the Cu(211) surface
with Zn substitution of 33% Cu at the step edge to simulate
CuZn alloy (Figure 1a). For Cu/ZnO interface, the planar,

graphite-like ZnO layer supported on Cu(111) (Figure 1b) is
adopted, where the similar structures have been identified on
Au(111) and Cu nanoparticles in an industrially relevant Cu/
ZnO/Al2O3 catalyst.

30−33 Despite the high CO2 selectivity, the
pristine ZnO is not considered here owing to its low activity for
MSR.34

2. COMPUTATIONAL METHODS
DFT calculations were performed by the Vienna ab-initio
simulation package (VASP)35 with optPBE-vdW.36 The
interaction between the ionic cores and electrons was described
by the projector-augmented wave (PAW) method,37,38 and the
Kohn−Sham valence electronic wave function was expanded in
a plane-wave basis set with a kinetic energy cutoff at 400 eV.
The energies were converged to within 10−4 eV/atom, and the
forces were converged to within 0.02 eV/Å.
The Cu(111) surface was modeled using a four-layer slab

with (3 × 3) surface unit cell. A (1 × 3)-11-layer Cu(211) slab
with 1/3 Cu substituted by Zn on the step edge, denoted as
CuZn(211), was used to simulate CuZn alloy.15,39 One-layer

graphite-like (3 × 3) ZnO(0001) ribbon, with an in-plane
lattice of 3.30 Å, on three-layer (4 × 8) Cu(111) slab was
adopted to simulate Cu/ZnO interface according to previous
results.30,32,33,40,41 A vacuum region of 15 Å between any two
repeated slabs was found to be sufficient to avoid interactions
between repeated slabs along the z-direction. The surface
Brillouin zone was sampled with a (5 × 5 × 1), (5 × 5 × 1),
and (1 × 2 × 1) Monkhorst−Pack k-points grid mesh42 for
Cu(111), CuZn(211), and Cu/ZnO, respectively. The top two
layers of Cu(111) and Cu/ZnO, top six layers of CuZn(211),
and the adsorbed species were fully relaxed, and the remaining
layers were fixed in their bulk truncated positions. The lattice
constant for copper is calculated to be 3.64 Å, in good
agreement with the experimental value of 3.62 Å.
The adsorption energies (Eads) were calculated at their most

stable structures, relative to the clean surfaces and the isolated
atoms

= − −E E E Eads ads/sub ads sub

in which Ead/sub, Ead, and Esub are the energy of the optimized
adsorption system of adsorbate and substrate, adsorbate in the
gas phase, and the clean substrate, respectively.
All transition states (TSs) were located by the force reversed

method43 and climbing-image nudged elastic band method (CI-
NEB).44,45 We also performed DFT+U calculations for the
correction of the on-site Coulomb repulsion of 3d electrons of
Zn atoms. We have tested the two commonly used U − J values
of 4.7 eV46 and 8.5 eV47 for Zn in Au(111)/ZnO and found
that both values gave rather similar structures and energetics.32

Therefore, a value of U − J = 4.7 eV was used in the present
work. The relaxation will stop until the residual forces in each
atom are smaller than 0.05 eV/Å. The transition states were
verified by vibrational analysis showing a single imaginary
mode. Zero-point energies and entropy corrections were
neglected. The activation energies (Ea) and reaction energies
of elementary reactions (Er) were taken with respect to isolated
reactants/products. The negative values of Er represent
exothermic processes, and positive values of Er represent
endothermic processes.

Figure 1. Side view (upper panel) and top view (lower panel) of (a)
CuZn(211) and (b) graphite-like ZnO on Cu for Cu/ZnO interface.
The vermilion, red, and purple balls represent Cu, O, and Zn atoms,
respectively.

Table 1. Calculated Activation Energies (Ea in eV), Reaction Energies (Er in eV), and Geometric Information (d in Å) at the
Transition States of the Elementary Reactions Involved in MSR on Cu(111), CuZn(211), and Cu(111)/ZnO Interface

Cu(111) CuZn(211) Cu(111)/ZnO

elementary reactions Ea Er d Ea Er d Ea Er d

(1) H2O* + * → OH* + H* 1.18 −0.14 1.42 0.81 −0.21 1.39 0.17 −0.70 1.12
(2) OH* + * → O* + H* 1.70 0.60 1.57 1.53 0.76 1.67 0.60 −0.21 1.25
(3) CH3OH* + * → CH3O* + H* 1.07 −0.18 1.43 0.74 −0.11 1.41 0.28 −0.52 1.12
(4) CH3O* + * → CH2O* + H* 1.33 0.99 1.83 1.29 1.03 1.93 1.27 0.58 1.54
(5) OH* + CH2O* → H2COOH* + * 0.38 −0.39 2.11 0.20 −0.31 1.96 0.38 −0.53 2.11
(6) H2COOH* + * → HCOOH + H* 0.92 0.07 1.60 0.91 0.22 1.73 1.33 0.19 1.40
(7) HCOOH* + * → HCOO* + H* 0.53 −0.51 1.54 0.62 −0.63 1.43 0 −1.27
(8) HCOO* + * → CO2* + H* 1.26 0.51 1.53 1.45 0.86 1.87 1.19 0.04 1.40
(9) H2COOH* + *→ H2COO*+H* 1.20 0.21 1.60 1.34 0.12 1.47 0.14 −0.09 1.22
(10) H2COO* + * → HCOO* + H* 0.81 −0.64 1.52 1.09 −0.52 1.54 0.91 −0.99 1.34
(11) CH2O* + * → HCO* + H* 0.83 0.31 1.63 0.81 0.25 1.63 0.53 −0.30 1.42
(12) HCO* + * → CO* + H* 0.29 −0.76 1.42 0.45 −0.52 1.46 0.20 −1.34 1.25
(13) H* + H* → H2 (g) + 2* 0.90 0.36 0.95 0.85 −0.34 1.44
(14) OZnOH* + * → OZnO + H* 1.34 0.53 1.62
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3. RESULTS AND DISCUSSION
We first investigate water dissociation on Cu(111), CuZn(211),
and Cu/ZnO interface. It can be seen from Table 1 that not
only is the H2O* + * → OH* + H* step more exothermic on
Cu/ZnO interface compared with that on Cu(111) and
CuZn(211), but the activation energy barrier Ea is also
decreased by 1.01 and 0.64 eV on Cu/ZnO interface. Figure
2a shows further that Cu/ZnO interface stabilizes the transition

state (TS) and final state (FS) more than the initial state (IS) as
compared to Cu(111) and CuZn(211). By examining the
structures in Figures 3a and S1, we find that the H atom
attaches to the O atom at the Cu/ZnO interface instead of Cu
atoms on Cu(111) and CuZn(211) at the TSs and FSs. The
clearly distinct structures significantly stabilize H at Cu/ZnO
interface, as confirmed by the increased adsorption energy Eads

(by about 0.58 eV, Table 2) of H atom at the interfacial oxygen
relative to Cu atoms on Cu(111) and CuZn(211). The

differential charge density maps show considerable charge
withdrawal (Bader charge) from H by interfacial O at Cu/ZnO
interface (Figure 4a). However, charge builds up on H when

binding with Cu atoms on Cu(111) and CuZn(211) (Figures
4b and 4c), which reflects the different bond nature between
H−O and H−Cu bond. In addition, unlike Cu and CuZn,
which undergo the considerable rotation of the H−O axes for
H−OH bond scission, there is little structural change at Cu/
ZnO interface, contributing additionally to the substantial
decrease in Ea (see Figure 3a). Likewise, the OH* + * → O* +
H* step is also largely enhanced on Cu/ZnO interface owing to
the eletrophilicity of hydrogen, as shown in Figures 2a and 3b
and Table 1. These findings are consistent with the favorable
water dissociation observed on Cu/ZnO interface19 and other
interfaces between metal and metal oxides.48,49

For methanol dehydrogenation, it is found that the initial O−
H bond breaking is more favorable than the initial C−H bond
breaking regardless of the surface structure, consistent with the
previous reports on Cu,27 PdZn,50,51 and ZnO supported
single-atom catalysts.52 Similarly to water, the O−H bond
breaking in CH3OH* is also favorable at Cu/ZnO interface
owing to the strong H−interfacial O bond and formation of
favorable TS (Figures 2b and 3c). The barrier of 0.28 eV is
significantly lower than that of 1.07 and 0.74 eV on Cu and
CuZn, respectively. In contrast to the O−H bond scission, the
C−H bond scission of CH3O* does not exhibit a strong

Figure 2. Energy profiles of (a) water dissociation and (b)
formaldehyde formation on Cu(111) (black line), CuZn(211) (blue
line), and Cu(111)/ZnO (red line). The reference zero of the energy
scale corresponds to the energy of H2O and CH3OH in gas phase.

Figure 3. Structures at the transition states of (a) H2O* + *→ OH* +
H*, (b) OH* + * → O* + H*, (c) CH3OH* + * → CH3O* + H*,
(d) CH3O* + * → CH2O* + H*, (e) H2COOH* + * → H2COO* +
H*, and (f) H2COOH* + * → HCOOH* + H* on Cu(111) (I),
CuZn(211) (II), and Cu(111)/ZnO (III).

Table 2. Adsorption Energies (Eads in eV) of the Possible
Intermediates Involved in MSR on Cu(111), CuZn(211),
and Cu(111)/ZnO at Their Most Favorable Sites

intermediates Cu(111) CuZn(211) Cu(111)/ZnO

CH3OH −0.50 −0.73 −0.97
CH3O −2.78 −2.81 −3.02
CH2O −0.42 −0.60 −0.50
HCO −1.59 −1.79 −1.69
H2COOH −2.67 −2.99 −3.13
H2COO −4.60 −5.08 −4.85
HCOOH −0.50 −0.70 −
HCOO −3.23 −3.54 −3.17
H2O −0.34 −0.52 −0.59
OH −3.51 −3.68 −3.75
CO −0.92 −0.90 −1.03
CO2 −0.19 −0.21 −0.03
H −0.18 −0.17 −0.75

Figure 4. Differential charge density map for adsorption of H atom on
(a) Cu(111) (with the isosufaces of 0.003 au), (b) CuZn(211) (with
the isosufaces of 0.003 au), and (c) Cu(111)/ZnO (with the isosufaces
of 0.01 au). Vermilion, blue, red, and white spheres represent Cu, Zn,
O, and H, respectively. Blue and yellow insosurfaces indicate charge
depletion and accumulation.
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dependence on surface structure, with Ea differing by 0.06 eV at
most on the three surfaces. Comparing the TS structures in
Figures 3c and 3d, we find that the TS for the O−H bond
scission of CH3OH* is reactant-like, while that for the CH3O*
+ * → CH2O* + H* step is more product-like. The reason is
that for O−H bond scission H prefers to bind with both O at
the Cu/ZnO interface and in CH3O* intermediate at the TSs,
which facilitates O−H bond scission. However, a favorable TS
structure where H binds simultaneously with interfacial O
(planar, graphite-like structure) and C (tetrahedral structure) in
CH2O* is not available for C−H bond scission.
Once H2O is activated and CH2O is formed, the OH* +

CH2O* → H2COOH* + * step is quite facile on all the
systems considered, with the barriers of no more than 0.38 eV.
The facile recombinations of CH2O* and OH were also
reported previously on Cu and ZnO supported single atoms for
MSR.27,52 Then, the resulting H2COOH* intermediate can
proceed through either O−H bond scission forming H2COO*
intermediate or C−H bond scission forming HCOOH*
intermediate. As shown in Figure 5a and Table 1, Cu/ZnO

interface prefers the former pathway, and the Ea of O−H bond
scission is substantially lower than that of C−H bond scission
by 1.19 eV. However, the latter pathway is more favorable on
Cu and CuZn. The C−H bond scission of H2COOH*
intermediate on the two surfaces has similar Ea of ∼0.90 eV,
lower than the corresponding values of 1.20 and 1.34 eV for
O−H bond scission.
The different dehydrogenation pathways between Cu/ZnO

interface and Cu and CuZn alloy can be assigned to the high
activity of interfacial O in the O−H bond scission (Figures 3e
and 3f), as discussed above. Subsequently, the H2COO*
intermediate on Cu/ZnO interface undergoes C−H bond

scission (Ea = 0.91 eV), and HCOOH* intermediates on Cu
and CuZn undergo O−H bond scission (Ea = 0.53 vs 0.62 eV),
leading to HCOO* formation. The adsorbed HCOO*
intermediate can decompose into H and CO2, with the barriers
of 1.26, 1.45, and 1.19 eV on Cu, CuZn, and Cu/ZnO interface,
respectively. Finally, the H2 desorption can be expected to be
facile on these systems based on the calculated H2 dissociative
binding energies of −0.18 eV (Cu), −0.17 eV (CuZn), and
−0.75 eV (Cu/ZnO interface) relative to 1/2 H2 in gas phase.
As the coverage of atomic H increases at the interface O (1/3−
1 ML), H2 dissociative binding energy decreases by 0.11 eV.
Moreover, the entropic contribution of 0.73 eV per H2
molecule at 500 K and standard pressure53 can also provide
additional driving force for H2 desorption. In addition, the
previous experimental and theoretical study on FeO(111)
monolayer films on Pt(111) showed that the presence of O
vacancy can enhance the H2 formation and desorption.54

Therefore, it can be expected that H2 desorption could be
further promoted by the presence of O vacancy on ZnO.
Besides OH* species, CH2O* can recombine with atomic

O*, obtained either by the dissociation or by the disproportio-
nation of OH*. The previous DFT study suggests that despite
the relatively low barrier (0.25 eV) for OH disproportionation
leads to H2O formation,27,31 which will be unfavorable as
consideration of the reaction balance.55 Thus, the O* species is
not considered in this work.
The energy profiles for the most favorable CO2 formation

pathways on Cu(111), CuZn(211), and Cu/ZnO interface are
illustrated in Figure 6. It is found that the stability of adsorbed

intermediates generally follows the order of Cu(111) <
CuZn(211) ≪ Cu/ZnO. Compared to Cu(111), CuZn(211)
binds the intermediates modestly stronger (Table 2), which
agrees well with previous DFT calculations by Studt et
al.15,39,56−58 Apart from Cu(111) and CuZn(211), they also
consider Cu(211) and show that the bond strength of
intermediates on Cu(211) is in between Cu(111) and
CuZn(211). These results imply that both low coordination
number of step and alloying with Zn contribute to the stronger
intermediates binding on CuZn(211) than on Cu(111). On the
Cu/ZnO interface, a significant enhancement of stability of
intermediates, such as H*, CH3OH*, H2COOH*, and H2O*,
is found. Compared to H*, which shows the largest increase in
Ead by 0.58 eV owing to strong H−interfacial O interaction,

Figure 5. (a) Calculated barriers for C−H and O−H bond scission of
H2COOH* intermediate. (b) Effective total barriers for CO2, CH2O,
and CO formation with respect to CH2O* + OH*.

Figure 6. Energy profiles of methanol steam reforming on Cu(111)
(black line), CuZn(211) (blue line), and Cu/ZnO (red line). The
energy reference zero corresponds to the energy of H2O and CH3OH
in gas phase.
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CH3OH, H2COOH, and H2O binding at the interface via H-
bonding is less strengthened by 0.25−0.47 eV (Figure S1 and
Table 2). These increased stabilities would ensure that the
intermediates on Cu/ZnO interface would be found at higher
surface coverages at equilibrium conditions. In addition, the
barrier for O−H bond scission in H2O*, CH3OH*, and
H2COOH* is also greatly decreased on the interface, as
discussed above, thereby accelerating the CO2 formation.
However, the barriers of the elementary steps on Cu and CuZn
are comparable in magnitude, suggesting that the activity would
not be affected significantly by alloying.
Having discussed the CO2 formation, we now turn to its

competitive pathways, namely formaldehyde and CO formation
on Cu, CuZn, and Cu/ZnO interface. Note that formaldehyde
(CH2O*) is a key intermediate that is related to MSR
selectivity. As shown above, it can recombine with OH*,
followed by sequential H abstraction, leading to the formation
of CO2. In addition, the CH2O* can also desorb or
dehydrogenate, with the undesirable formation of CH2O or
CO. In the case of CO2 formation, it is controlled by
HCOOH* formation, HCOO* dehydrogenation, and CH2O*
recombination with OH* on Cu, CuZn, and Cu/ZnO interface,
respectively (Figure 6). The calculated corresponding total
barriers Etotal on these systems are 0.53, 0.95, and 0.38 eV
(Figure 5b), which are defined as the highest energies for CO2

formation (HCOOH* formation, HCOO* dehydrogenation,
and CH2O* + OH*) relative to CH2O* + OH*. The barrier of
CH2O* desorption is characterized by its adsorption energy,
and the corresponding values are 0.42, 0.60, and 0.50 eV (Table
2). For CO formation, it is controlled by the CH2O* + * →
HCO* + H* step regardless of surface structures, and the total
barriers with respect to CH2O* are 0.83, 0.81, and 0.53 eV on
Cu, CuZn, and Cu/ZnO interface, respectively. Two main
features can be seen from Figure 5b: (1) CO formation is the
least favorable on the three surfaces; (2) Cu and CuZn have
higher selectivity toward CH2O, whereas Cu/ZnO interface is
more selective for CO2 formation. The different selectivity of
the three surfaces mainly originates from the significant
enhancement of CO2 formation by the electrophilicity of
hydrogen at the interface.
Recently, Klotzer and co-workers19 compared the MSR

activity/selectivity of CuZn (≈10:1) surface alloy and pure Cu
foil using temperature-programmed reaction in an UHV-
compatible high-pressure cell operated as a recirculating batch
reactor. They found that the initial CuZn (≈10:1) surface alloy
provides an appropriate near-surface Zn loading for MSR-
induced segregation to yield submonolayer Zn(Ox) coverage
and therefore a high abundance of bimetallic-Cu(Zn)0/Zn(Ox)
interface at about 550 K. They proposed that the redox-active
Cu(Zn)0/Zn(Ox) sites assist in water activation and the
transfer of hydroxide or oxygen to the latter, thus providing
optimum conditions for higher CO2 activity and selectivity. On
clean Cu, dehydrogenation ceases with formaldehyde. These
experimental findings are in excellent agreement with the
present DFT calculations. Different from the experimental
speculation of methanol dehydrogenation to formaldehyde on
Cu(Zn)0 regions, the present calculations show that it will take
Cu(Zn)0/Zn(Ox) sites as water activation. To provide a
quantitative comparison with measurable kinetics, a kinetic
Monte Carlo simulation would be crucial and be addressed in
the future.

4. CONCLUSIONS
In summary, the distinct reactivities of the metallic copper,
bimetallic copper−zinc alloy, and copper/zinc oxide interface
coexisting under methanol steam reforming conditions are
identified. Two different H species, namely those binding with
O at Cu/ZnO interface and binding with metal on Cu and
CuZn alloy, are differentiated and play an important role for
overall activity and selectivity of MSR on zinc oxide supported
copper catalysts. The strong interaction of H−interfacial O
facilitates H adsorption and O−H bond scission in H2O,
CH3OH, and H2COOH, leading to the highest activity and
selectivity toward CO2 and H2. In contrast, the weak H−metal
interaction on Cu and CuZn alloy inhibits H adsorption and
O−H bond scission, which results in the low activity and high
selectivity toward CH2O. Besides the reactivity, the different
active sites for H binding also lead to variation in reaction
pathway for CO2 formation via H2COO (Cu/ZnO interface)
or HCOOH (Cu and CuZn alloy) intermediate. This work
highlights the role of metal/oxide interface in improving
reactivity of methanol steam reforming at the atomic level, and
the insights achieved can be used for catalyst development in
MSR and other energy conversion reactions of technological
interest.
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